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Abstract
In (Imada et al 2019 Nucl. Fusion 59 046016 and references therein) a new 4D drift kinetic
nonlinear theory, valid in the limit of a low beta, small inverse aspect ratio, circular cross
section, toroidal geometry, to describe the plasma response to the neoclassical tearing mode
(NTM) magnetic perturbation is derived. In (Dudkovskaia et al 2021 Plasma Phys. Control.
Fusion 63 054001) this theory is reduced in a low collisionality limit, which allows a
dimensionality reduction to a 3D problem to efficiently resolve the collisional dissipation layer
in the vicinity of the trapped-passing boundary. (Dudkovskaia et al 2021 Plasma Phys. Control.
Fusion 63 054001) adopts an improved model for the magnetic drift frequency, which reduces
the threshold magnetic island half-width from 8.73ρbi, where ρbi is the trapped ion banana orbit
width, to 1.46ρbi, making it in closer agreement with experimental observations for the large
aspect ratio tokamak equilibrium. In the present paper, the theory is extended to a high beta,
arbitrary tokamak geometry to capture the plasma shaping effects on the NTM threshold
physics with the focus on the non-zero triangularity discharges that are known to have a strong
impact on the plasma MHD stability. First, it is found that the higher triangularity plasma is
more prone to NTMs which is in agreement with the 2/1 tearing mode onset relative frequency
measurements in DIII-D. Second, the NTM threshold dependence on the tokamak inverse aspect
ratio obtained in (Dudkovskaia et al 2021 Plasma Phys. Control. Fusion 63 054001) is refined
and extended to a finite aspect ratio limit. Third, the NTM threshold dependence on poloidal
beta is obtained and benchmarked against the EAST threshold island width measurements.

Keywords: drift kinetic theory, neoclassical tearing mode, magnetic island, tokamak plasma,
bootstrap current, plasma shaping effects, plasma beta
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1. Introduction

Neoclassical tearingmodes (NTMs) are amongst the main per-
formance limiting, resistive magnetohydrodynamic (MHD)
plasma instabilities in a tokamak. Their presence is anticipated
for the ITER baseline scenario, such as ELMy H-mode [1], as
well as in advanced tokamak scenarios, e.g. as planned for JT-
60SA. NTMs arise from filamentation of the current density,
which modifies the equilibriummagnetic field topology, form-
ing magnetic islands. The main drive for NTMs is provided
by helical holes in the bootstrap current density that arise as
a result of the pressure profile flattening across the island [2,
3]. This conventional theory is correct provided there are no
heat or particle sources/sinks within the island and the island
width is sufficiently large, i.e. much larger than the trapped ion
banana orbit width. NTM stabilisation can be achieved by cur-
rent drive. For example, on ITER it is planned to control NTMs
by launching microwaves at the electron cyclotron frequency
to restore the missing bootstrap current inside the island. This
control scheme is highly sensitive to the radial localisation of
current drive. A key parameter for quantifying the NTM con-
trol system (i.e. the amount of power required to stabilise the
mode and how localised it has to be) is the magnetic island
threshold half-width, wc, below which magnetic islands are
observed experimentally to self-heal. The knowledge of wc
will help to optimise control schemes [4] on present devices
and extrapolate requirements on current drive to ITER and
DEMO.

Along with the bootstrap drive, ∆bs, there are three other
main contributions to the perturbed current density parallel
to the magnetic field lines, and hence to island evolution.
These are (a) the inductive contribution associated with the
island growth, proportional to dw/dt, where w is the magnetic
island half-width, (b) the polarisation contribution, ∆pol, and
(c) curvature effects, ∆cur. These are localised in the vicin-
ity of the magnetic island, and cause a jump in the perturbed
magnetic flux gradient across the associated resonant surface.
This jump must be matched to the parameter∆ ′ derived from
the global equilibrium properties using ideal MHD [5]. The
polarisation current, and hence ∆pol, is highly sensitive to the
physics of the boundary layer that surrounds the island sep-
aratrix and plays a role for islands of width comparable to ρbi.
In the present paper we set the equilibrium radial electric field
to zero in the island rest frame. This then removes the polarisa-
tion contribution associated with the equilibrium electric field
from the analysis. Any polarisation current contribution then
arises from the self-consistent, localised electrostatic poten-
tial, required for quasi-neutrality.

The NTM drive provided by the perturbed bootstrap cur-
rent exists in a low collisionality tokamak regime and is pro-
portional to a linear combination of the ion/electron dens-
ity/temperature gradients. The theory of this bootstrap drive is
well-developed in the limit of large islands [6–8] and [9] (for
w≫ ρbi but allowing w∼ ρϑi = ε−1/2ρbi, where ρϑi is the ion
poloidal Larmor radius and ε= rs/R0 is the tokamak inverse
aspect ratio with rs denoting the rational surface location and
R0 being the tokamak major radius). There are a few theories
that have attempted to consider small islands in the vicinity of

theNTM threshold. For example, [10] addresses the heat trans-
port model. For large islands, the pressure gradient removal
in the vicinity of the island O-point is the result of the dom-
inant parallel transport. [10] retains the perpendicular trans-
port and estimates the threshold island width by balancing it
against the parallel transport. The calculation is carried out in
the collisional limit of parallel transport. [11] provides a calcu-
lation similar to [10] but in the collisionless limit, employing a
simplified kinetic equation and balancing the parallel stream-
ing with radial diffusion. A rigorous treatment of magnetic
islands of width comparable to the trapped ion banana orbit
width requires the kinetic approach to capture the finite orbit
width effects. For example, [12, 13] solves the drift kinetic
equation in a low beta, circular cross section tokamak limit
and confirms the ion density gradient restoration across islands
of width comparable to ρbi; however, it does not provide an
accurate solution for the electron component, being inconsist-
ent with plasma quasi-neutrality. [14, 15] extends the model
to gyrokinetics and allows for the electrostatic potential to be
determined self-consistently from the electron response, how-
ever, not fully capturing the neoclassical physics and neglect-
ing collisions.

In [16–19] we have developed a new self-consistent drift
kinetic theory and associated drift island formalism to describe
how plasma responds to the NTM magnetic perturbation. To
implement this, two numerical codes have been developed: 4D
DK- [18] and 3D RDK-NTM [19] (the 3D version, developed
in [19], averages the distribution function over streamlines to
reduce the 4D version and is valid for small, ITER-relevant
collisions). They both assume a low beta large aspect ratio
tokamak and consider the limit of small islands, compar-
able to ρbi, to retain the effects of finite orbit widths relev-
ant for the NTM threshold island width. [19] considers how
the parallel current density varies as the magnetic island width
approaches the ion poloidal Larmor radius. For large islands of
half-width w≫ ρϑi, no parallel current is supported inside the
magnetic island, providing a strong drive for NTMs, in agree-
ment with the conventional theory of large magnetic islands.
As the island width decreases towards values comparable to
ρϑi, we find significant stabilising currents in the vicinity of
the magnetic island separatrix close to X-points that spread
into the island region, as well as growing destabilising cur-
rents just outside the separatrix. Their balance determines the
threshold island width that is found numerically to be a few
ion banana widths for a chosen equilibrium scenario, qualit-
atively matching data from DIII-D, ASDEX-U and JT-60U.
Although the threshold scaling with the inverse aspect ratio as
ε1/2, recovered in [19], indicates a role for trapped particles,
the theory shows that the thresholdmechanism originates from
the drift orbits associated with passing particles. Specifically,
passing particles are shown to follow ‘drift islands’ which are
of the same shape as the magnetic island, but shifted radially
relative to it by a few ρϑi. The passing particle distribution
function is then found to be flattened across these drift islands
and, for w∼ ρϑi, maintains a density gradient across the mag-
netic island.

To provide a quantitative prediction to compare with exper-
iment, in the present paper we extend the drift island formalism
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[18, 19] to a finite beta, arbitrary tokamak geometry plasma
configuration. This then captures the plasma curvature effects
on the NTM threshold physics. The effects of the plasma shap-
ing are expected to be less significant in conventional toka-
maks, based on a number of predictions [20, 21]; however, if
stabilising, they can enhance the passing particle drift mech-
anism for the threshold discovered in [19]. Furthermore, they
are likely to be particularly important for spherical tokamaks.

The paper is organised as follows. In section 2 we define the
coordinate system. In section 3 we introduce a general kinetic
equation that we gyro-average in section 4 to obtain the drift
kinetic equation extended to a finite beta limit. In section 5
we define the perturbed magnetic field topology associated
with the magnetic island and proceed to calculating the plasma
response to the magnetic field perturbation in section 6. This
is followed by conclusions in section 7.

2. Coordinate system

We define an orthogonal coordinate system with the basis
formed by the unit vectors (bbb,eee2,eee3). Note, bbb= eee2 ×eee3, eee2 ·
deee3/dt=−eee3 · deee2/dt and eee2 · deee2/dt= 0 and so on, where
d/dt denotes the time derivative following the particle orbit,
xxx. The unit vector bbb=BBB/B, whereBBB is the total magnetic field
and B= |BBB|. We write the velocity as

VVV= uuu+ sss (1)

with

uuu= ubbb≡ V∥bbb (2)

being the velocity component along and

sss≡VVV⊥ = s(eee2 cosα−eee3 sinα)≡ sŝss (3)

across the magnetic field lines. Here α denotes the gyrophase
angle. The Larmor radius vector is then given by

ρρρ=
bbb× sss
ωc

= ρ(eee3 cosα+eee2 sinα)≡ ρρ̂ρρ, (4)

where ωc = eZB/m is the cyclotron frequency, eZ and m are
the particle charge and mass, respectively; ρ= s/ωc6. The
equation of motion for these particles reads

m
d(uuu+ sss)

dt
= eZEEE−mωcsρ̂ρρ, (5)

where eZVVV×BBB =−mωcsρ̂ρρ and EEE=−∇∇∇Φ− ∂AAA/∂t is the
electric field; Φ is the electrostatic potential and AAA is the mag-
netic vector potential. We define the magnetic moment (per
unit mass) as µ= s2/2B and the total energy (per unit mass) as
U= µB+ u2/2+ eZΦ/m≡ V2/2+ eZΦ/m, where V is the
particle speed.

6 The particle species index, j, is to be omitted for simplicity and is to be
introduced only when it is necessary to distinguish ions and electrons.

3. General kinetic equation in {t,xxx,U,µ,α} space

The general kinetic equation for the particle distribution func-
tion, f, in {t,xxx,U,µ,α} space reads

ωc
∂f
∂α

∣

∣

∣

∣

xxx,U,µ

+Lf= Cf, (6)

where

L=
∂

∂t
+VVV ·∇∇∇+

dµ
dt

∂

∂µ

∣

∣

∣

∣

xxx,U,α

+
dU
dt

∂

∂U

∣

∣

∣

∣

xxx,µ,α

+

(

dα
dt

−ωc

)

∂

∂α

∣

∣

∣

∣

xxx,U,µ

. (7)

The collision operator, C, is to be specified below. From the
equation of motion, equation (5), it can be shown that

dµ
dt

=−µ
B
dB
dt

− u
B
dbbb
dt

· sss+ eZ
mB

EEE · sss, (8)

dU
dt

=
eZ
m
∂Φ

∂t
− eZ
m
VVV · ∂AAA

∂t
(9)

and

dα
dt

= ωc+eee3 ·
deee2
dt

+
u
s
dbbb
dt

· ρ̂ρρ− eZ
ms
EEE · ρ̂ρρ. (10)

The derivation is similar to that presented in [22].

4. Gyro-averaging. Drift kinetic equation

We introduce a small parameter:

δ∗ =
ρ

L
≪ 1,

where ρ is the particle Larmor radius. L denotes the
characteristic size of the system. The particle distribution
function is

f= f0 + f1 +O
(

δ2∗ f0
)

. (11)

Expanding equation (6) in powers of δ∗ and retaining the
O
(

δ1∗
Vt
L f0
)

corrections (V t is the particle thermal speed) to cap-
ture the plasma drift effects, we obtain an extended drift kinetic
equation for f 0 (see appendix A for a detailed derivation):

∂f0
∂t

+(uuu+uuuD+VVVD) ·∇∇∇f0 +
dµ
dt

∣

∣

∣

∣

avg

∂f0
∂µ

+

{

µ

[

∇∇∇× ∂AAA
∂t

]

·bbb

+
eZ
m

[

∂Φ

∂t
− (uuu+uuuD+VVVD) ·

∂AAA
∂t

]}

∂f0
∂U

= Cf0

(12)

in {t,xxx,U,µ} space or

∂f0
∂t

+(uuu+uuuD+VVVD) ·∇∇∇f0 +
dµ
dt

∣

∣

∣

∣

avg

∂f0
∂µ

+

{

µ

[

∇∇∇× ∂AAA
∂t

]

·bbb+ eZ
m

(uuu+uuuD+VVVD) ·EEE
}

∂f0
V∂V

= Cf0

(13)

3
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in {t,xxx,V,µ} space. Here the parallel drift velocity is

uuuD =
s2

2ωc

µ0j∥
B

bbb (14)

with µ0 j∥/B being provided by equation (A.12).VVVD is the drift
velocity defined as VVVD =VVVE+VVVd with

VVVE =
EEE×bbb
B

, VVVd =
1
ωc
bbb×

[

s2

2
∇∇∇ lnB+ u2 (bbb ·∇∇∇)bbb

]

, (15)

and

1
µ

dµ
dt

∣

∣

∣

∣

avg

= u(bbb ·∇∇∇)

(

u
ωc

µ0j∥
B

)

+
s2

ωc

µ0

B
(jjj⊥ ·∇∇∇ lnB)

+
2
B
[bbb× (bbb ·∇∇∇)bbb] · ∂AAA

∂t
− 2u
ωc

[

bbb× ∂bbb
∂t

]

·(bbb ·∇∇∇)bbb.

(16)

The dµ
dt

∣

∣

∣

avg
term (see appendix B for a detailed derivation) is

usually ordered out from the drift kinetic equation, being con-
sidered as the O

(

βδ∗
Vt
L f0
)

correction, where β is the ratio of
plasma pressure, p, to the magnetic field pressure, B2/(2µ0).
However, to allow the finite beta limit, we must retain the
magnetic moment variation of the distribution function in the
Vlasov operator.

Equation (13) with equations (14)–(16) form the drift kin-
etic equation to be employed to describe the plasma response
to the NTM magnetic island in a finite beta arbitrary tokamak
geometry plasma.

5. Magnetic topology

We consider a finite beta axisymmetric tokamak plasma with
equilibrium magnetic field given by

BBB0 = I(ψ)∇∇∇ϕ+∇∇∇ϕ×∇∇∇ψ, (17)

where I= RBϕ depends on poloidal current, R is the varying
tokamak major radius and Bϕ is the toroidal component of the
magnetic field. Here ψ is the poloidal flux function introduced
to label nested magnetic flux surfaces, and ϕ denotes the tor-
oidal angle. The magnetic field perturbation associated with a
single isolated magnetic island is

BBB1 =∇∇∇× (A1
∥ bbb0)+∇∇∇×AAA1

⊥ (18)

with

A1
∥ =− ψ̃

R
cos(nξ), (19)

where ψ̃ = (wψ2/4)(q ′/q) and wψ being the island half-width
in ψ space related to w in r space via w= wψ/(RBϑ), and
bbb0 =BBB0/|BBB0| is the unit vector along the equilibrium mag-
netic field lines7. AAA1

⊥ is the perpendicular component of the

7 For equilibrium quantities, i.e. in the absence of the magnetic island, prime
denotes the derivative with respect to ψ.

perturbed vector potential. Bϑ is the poloidal component of
the magnetic field. Here we have defined the helical angle as
ξ = ϕ− qsϑ with qs =m/n being the safety factor, q, eval-
uated at the rational surface, i.e. the ratio of the poloidal m
to the toroidal n mode number; ϑ is the poloidal angle with
∇∇∇ψ ·∇∇∇ϑ= ϑ ′R2B2

ϑ. It can be shown that

BBB1 ·∇∇∇pϕ =− nψ̃
RB0

B2
ϑ

(

1+
qs
q

B2
ϕ

B2
ϑ

)

sin(nξ)

+
ψ̃

R2B2
0

I2

qR2

∂ (RB0)

∂ϑ

∣

∣

∣

∣

ψ,ϕ

cos(nξ)+O
(

δ∗∆
2LB2

0

)

, (20)

where pϕ = ψ−ψs− Iu/ωc and ψs represents the position of
the rational surface in ψ space. Here we have introduced the
second small parameter:

∆=
w
a
≪ 1, (21)

where a is the tokamak minor radius. TheO
(

δ∗∆
2LB2

0

)

terms
in equation (20) provideO

(

δ∗∆
2 Vt
L f0
)

corrections in the drift
kinetic equation and thus will be omitted. The perturbed dis-
tribution function associated with the magnetic island per-
turbation is assumed to be ∼∆f0. Then from Ampère’s law,
|BBB1| ∼∆2B0 with∇∇∇× (B1

∥ bbb0)∼∇∇∇⊥B1
∥ ×bbb0 and B1

∥ ≡ (BBB1 ·
bbb0)∼ β∆2B0, provided |∇∇∇⊥| ∼ 1/wwhen acting on perturbed
quantities. Since

B1
∥ (bbb0 ·∇∇∇pϕ) =−B1

∥

∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

Iu
ωc

)

I
qR2B0

∼ βδ∗∆
2LB2

0,

the second term in equation (18) results in the O
(

δ∗∆
2 Vt
L f0
)

corrections in the drift kinetic equation. Note, the radial vari-
ation of equilibrium quantities, including q and q

′

, results in
the O

(

δ∗∆
2LB2

0

)

corrections in equation (20).

5.1. Note on drift kinetic ordering in the NTM description

According to experiment [23, 24], the threshold width is
about (2− 3)ρbi. Therefore, the island widths we are inter-
ested in are w∼ ρbi ∼ ε1/2ρϑi, where ρϑi is the ion pol-
oidal Larmor radius related to the ion Larmor radius via
ρϑi = ρi/Θ with Θ= Bϑ/B0. To eliminate the gyro-angle
dependence in the drift kinetic theory, we expand the particle
distribution function in powers of δ∗ and perform aver-
aging over α at fixed particle position, as was shown in
section 4. The latter is equivalent to gyro-averaging at fixed
position of the guiding centre, XXX= xxx−ρρρ, with the finite
Larmor radius effects being neglected, e.g. ⟨Φ(xxx, t)⟩XXXα =

⟨Φ(XXX+ρρρ, t)⟩XXXα = ⟨Φ(XXX, t)+ (ρρρ ·∇∇∇)Φ⟩XXXα ≈ Φ(XXX, t)≈ Φ(xxx, t)
or ⟨Φ(xxx, t)⟩xxxα =Φ(xxx, t). The fields, being functions of xxx and t,
commute with the gyro-averaging operator at fixed xxx. How-
ever, since the fields are not expanded in δ∗ and |∇∇∇| ∼ 1/L
along and across the field lines when deriving the drift kin-
etic equation, certain effects associated with the rapid spatial
variation are ordered out in the drift kinetic approach. Since
the fields are not allowed to vary across the Larmor radius

4
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length scales, we have to ensure that δ∗ is an order smaller
than ∆, i.e. the drift kinetic theory implicitly imposes limits
on the poloidal component of the magnetic field: Bϑ remains
finite but is required to be smaller compared to B0 for finite
tokamak aspect ratio. While Bϑ/B0 ≪ 1 is typically a good
approximation to describe a realistic D-shaped conventional
tokamak geometry, it often becomes invalid for spherical toka-
mak equilibria. Indeed, the NTM is typically associated with
the q= (2− 3) flux surfaces, and hence Bϑ/B0 ≪ 1 provides
an ε limit, making the drift kinetic theory questionable for
ε > (0.4− 0.5) and thus in certain cases not applicable for
spherical tokamaks. To fully capture the w∼ ρ (or Bϑ ∼ B0)

effects, the theory needs to be extended to gyrokinetics which
we will address in future work.

6. Plasma response

6.1. DK-NTM formulation

To simplify the analysis below, we work in the island rest
frame, which eliminates the time variation from the drift
kinetic equation. Splitting the particle distribution function
into the equilibrium Maxwell–Boltzmann piece and the per-
turbed piece, g=O(∆f0), as discussed in [19], we obtain

I
qR2

{

u
B0

[

1− I
∂

∂ψ

∣

∣

∣

∣

ϑ,ϕ

(

u
ωc

)

+
µ0

B2
0

p ′
eqm

Iu
ωc

]

+
I

B2
0

∂Φ

∂ψ

∣

∣

∣

∣

ϑ,ξ

+
s2

2ωc

µ0j∥
B2
0

}

∂g
∂ϑ

∣

∣

∣

∣

pϕ,ξ,µ,V

+

{

u
B0

[

(BBB1 ·∇∇∇pϕ)−
I2

qR2

u
ωc

(

I ′ +
µ0

B2
0

p ′
eqmI

)

∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)

]

− I2

qR2B2
0

∂Φ

∂ϑ

∣

∣

∣

∣

pϕ,ξ

+
∂Φ

∂ξ

∣

∣

∣

∣

ψ,ϑ

− s2

2ωc

µ0j∥
B2
0

I2

qR2

∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)

}

∂g
∂pϕ

∣

∣

∣

∣

ϑ,ξ,µ,V

+

{

u
B0

[

I
qR2

q ′
s

(

pϕ+
Iu
ωc

)

+B2
0
∂

∂ψ

∣

∣

∣

∣

ϑ,ϕ

(

u
ωc

)

+ϑ ′B2
ϑ

∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)

−µ0p
′
eqm

u
ωc

]

− ∂Φ

∂ψ

∣

∣

∣

∣

ϑ,ξ

}

∂g
∂ξ

∣

∣

∣

∣

pϕ,ϑ,µ,V

+µ
I
qR2

{

u
B0

∂

∂ϑ

∣

∣

∣

∣

ψ,ξ

(

u
ωc

µ0j∥
B0

)

+
s2

ωc

µ0

B2
0

p ′
eqm

I

B2
0

∂B0

∂ϑ

∣

∣

∣

∣

ψ,ϕ

}

∂g
∂µ

∣

∣

∣

∣

xxx,V

− eZ
m

u
B0

I
qR2

∂Φ

∂ϑ

∣

∣

∣

∣

pϕ,ξ

∂g
V∂V

∣

∣

∣

∣

xxx,µ

= Cg+O
(

∆3Vt
R
f0

)

(22)

for the equation to be solved for g8. Here peqm is the equi-
librium plasma pressure. In the absence of perturbations, we
assume the plasma is in MHD equilibrium, i.e. jjj0 ×BBB0 =
∇∇∇peqm and hence

(bbb0 ·∇∇∇)bbb0 −∇∇∇ lnB0 +(bbb0 ·∇∇∇ lnB0)bbb0 =
µ0

B2
0

∇∇∇peqm,

8 To obtain equation (22) it is convenient to rewrite the magnetic drift velocity

in equation (15) as VVVd =−uuu×∇∇∇
(

u
ωc

)

+ u2

ωc

µ0

B
jjj⊥.

where jjj0 is the equilibrium current density and ∇∇∇peqm =
p ′
eqm∇∇∇ψ. Note, the perturbed magnetic field appears only in

front of ∂g/∂pϕ since |∇∇∇⊥| ∼ 1/awhen acting on equilibrium
quantities and |∇∇∇⊥| ∼ 1/w when acting on perturbed quantit-
ies. Applying

∂

∂V

∣

∣

∣

∣

ψ,µ

=
∂

∂V

∣

∣

∣

∣

pϕ,µ

− IV
uωc

∂

∂pϕ

∣

∣

∣

∣

V,µ

,

∂

∂µ

∣

∣

∣

∣

ψ,V

=
∂

∂µ

∣

∣

∣

∣

pϕ,V

+
IB0

uωc

∂

∂pϕ

∣

∣

∣

∣

µ,V

,

5
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we rewrite equation (22) in terms of {pϕ, ξ,ϑ,µ,V}:

I
qR2

{

u
B0

[

1− I
∂

∂ψ

∣

∣

∣

∣

ϑ,ϕ

(

u
ωc

)

+
µ0

B2
0

p ′
eqm

Iu
ωc

]

+
I

B2
0

∂Φ

∂ψ

∣

∣

∣

∣

ϑ,ξ

+
s2

2ωc

µ0j∥
B2
0

}

∂g
∂ϑ

∣

∣

∣

∣

pϕ,ξ,µ,V

+

{

u
B0

[

(BBB1 ·∇∇∇pϕ)−
I2

qR2

u
ωc

(

I ′ +
µ0

B2
0

p ′
eqmI

)

∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)

]

+
∂Φ

∂ξ

∣

∣

∣

∣

ψ,ϑ

+
I2

qR2B0

s2

2ωc

[

u
ωc

∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

µ0j∥
B0

)

+
s2

u
I
ωc

µ0

B2
0

p ′
eqm

∂B0

B0∂ϑ

∣

∣

∣

∣

ψ,ϕ

]}

∂g
∂pϕ

∣

∣

∣

∣

ϑ,ξ,µ,V

+

{

u
B0

[

I
qR2

q ′
s

(

pϕ+
Iu
ωc

)

+B2
0
∂

∂ψ

∣

∣

∣

∣

ϑ,ϕ

(

u
ωc

)

+ϑ ′B2
ϑ

∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)

−µ0p
′
eqm

u
ωc

]

− ∂Φ

∂ψ

∣

∣

∣

∣

ϑ,ξ

}

∂g
∂ξ

∣

∣

∣

∣

pϕ,ϑ,µ,V

+µ
I
qR2

{

u
B0

∂

∂ϑ

∣

∣

∣

∣

ψ,ξ

(

u
ωc

µ0j∥
B0

)

+
s2

ωc

µ0

B2
0

p ′
eqm

I

B2
0

∂B0

∂ϑ

∣

∣

∣

∣

ψ,ϕ

}

∂g
∂µ

∣

∣

∣

∣

pϕ,ϑ,ξ,V

− eZ
m

u
B0

I
qR2

∂Φ

∂ϑ

∣

∣

∣

∣

pϕ,ξ

∂g
V∂V

∣

∣

∣

∣

pϕ,ϑ,ξ,µ

= Cg+O
(

∆3Vt
R
f0

)

.

(23)

Switching to {pϕ, ξ,ϑ,λ,V}, where λ is the pitch angle defined
as λ= 2µ/V2 with

∂

∂V

∣

∣

∣

∣

µ

=
∂

∂V

∣

∣

∣

∣

λ

− 2λ
V

∂

∂λ

∣

∣

∣

∣

V

,

∂

∂µ

∣

∣

∣

∣

V

=
2
V2

∂

∂λ

∣

∣

∣

∣

V

,

and dividing both sides of the equation by Iu/
(

B0R2
)

, we
obtain

1
q
∂g0
∂ϑ

∣

∣

∣

∣

pϕ,ξ,λ,V

= 0 (24)

for the O
(

∆1f0
)

equation, where we have introduced

g= g0 + g1 +O
(

∆3 f0
)

. (25)

From equation (24) we learn that the leading order
plasma response to the magnetic island, g0, is inde-
pendent of ϑ at fixed pϕ. The O

(

∆2f0
)

equation reads

1
q
∂g1
∂ϑ

∣

∣

∣

∣

pϕ,ξ,λ,V

+

{

R2

I
(BBB1 ·∇∇∇pϕ)+

B0R2

Iu
∂Φ

∂ξ

∣

∣

∣

∣

ψ,ϑ

− I2

2q

(

I ′

I
+
µ0

B2
0

p ′
eqm

V2

u2

)

∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)2
}

∂g0
∂pϕ

∣

∣

∣

∣

ϑ,ξ,λ,V

+

{

q ′
s

q

(

pϕ+
Iu
ωc

)

+
R2B2

0

I
∂

∂ψ

∣

∣

∣

∣

ϑ,ϕ

(

u
ωc

)

+ϑ ′R
2B2
ϑ

I
∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)

−uR2

Iωc
µ0p

′
eqm − R2B0

Iu
∂Φ

∂ψ

∣

∣

∣

∣

ϑ,ξ

}

∂g0
∂ξ

∣

∣

∣

∣

pϕ,ϑ,λ,V

+
λ

q

{

∂

∂ϑ

∣

∣

∣

∣

ψ,ξ

(

u
ωc

µ0j∥
B0

)

+
s2

uωc

µ0

B2
0

p ′
eqm

I
B0

∂B0

∂ϑ

∣

∣

∣

∣

ψ,ϕ

}

∂g0
∂λ

∣

∣

∣

∣

pϕ,ϑ,ξ,V

− eZ
m

1
q
∂Φ

∂ϑ

∣

∣

∣

∣

pϕ,ξ

∂g0
V∂V

∣

∣

∣

∣

pϕ,ϑ,ξ,λ

+ 2
eZ
m

λ

qV2

∂Φ

∂ϑ

∣

∣

∣

∣

pϕ,ξ

∂g0
∂λ

∣

∣

∣

∣

pϕ,ϑ,ξ,V

=
R2B0

Iu
Cg0 +O

(

∆3f0
)

. (26)

Note, we split the ordering in equations (24) and (26) since
the analysis is based on the extended drift kinetic equation,
equation (13), that incorporates both the O

(

δ0∗
Vt
L f0
)

and

O
(

δ1∗
Vt
L f0
)

corrections, which results from equation (A.6).
Integrating equation (26) over ϑ at fixed pϕ eliminates the first
term on the left hand side of equation (26) and provides an
equation for g0:

6
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{

〈

R2

I
(BBB1 ·∇∇∇pϕ)

〉pϕ

ϑ

+

〈

B0R2

Iu
∂Φ

∂ξ

∣

∣

∣

∣

ψ,ϑ

〉pϕ

ϑ

− I2

2q

〈

µ0

B2
0

p ′
eqm

V2

u2
∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)2
〉pϕ

ϑ

}

∂g0
∂pϕ

∣

∣

∣

∣

ϑ,ξ,λ,V

+

{

〈

q ′
s

q

(

pϕ+
Iu
ωc

)〉pϕ

ϑ

+

〈

R2B2
0

I
∂

∂ψ

∣

∣

∣

∣

ϑ,ϕ

(

u
ωc

)

〉pϕ

ϑ

+

〈

ϑ ′R
2B2
ϑ

I
∂

∂ϑ

∣

∣

∣

∣

ψ,ϕ

(

u
ωc

)

〉pϕ

ϑ

−
〈

uR2

Iωc
µ0p

′
eqm

〉pϕ

ϑ

−
〈

R2B0

Iu
∂Φ

∂ψ

∣

∣

∣

∣

ϑ,ξ

〉pϕ

ϑ

}

∂g0
∂ξ

∣

∣

∣

∣

pϕ,ϑ,λ,V

+
λ

q

〈

s2

uωc

µ0

B2
0

p ′
eqm

I
B0

∂B0

∂ϑ

∣

∣

∣

∣

ψ,ϕ

〉pϕ

ϑ

∂g0
∂λ

∣

∣

∣

∣

pϕ,ϑ,ξ,V

=

〈

R2B0

Iu
C

〉pϕ

ϑ

g0 +O
(

∆3f0
)

. (27)

Equation (27) with equation (20) extends equation 14 of [19]
to a finite beta case. The orbit-averaging operator at fixed pϕ,
⟨. . .⟩pϕϑ , is defined as in equation 16 of [19]:

⟨. . .⟩pϕϑ =

{

1
2π

´ π

−π
. . .dϑ, λ⩽ λc

1
4π

∑

σ σ
´ ϑb
−ϑb

. . .dϑ, λ > λc.

Here σ ≡ u/|u|=±1, and λc is the trapped-passing bound-
ary. The bounce points, ϑ= ϑb, are provided by the condition:
u(ϑb) = 0. Note, to switch from equations (26) to (27) we have
used the result

∂

∂ϑ

∣

∣

∣

∣

pϕ

=
∂

∂ϑ

∣

∣

∣

∣

ψ

+
∂

∂ϑ

∣

∣

∣

∣

pϕ

(

Iu
ωc

)

∂

∂ψ

∣

∣

∣

∣

ϑ

=
∂

∂ϑ

∣

∣

∣

∣

ψ

+
∂

∂ϑ

∣

∣

∣

∣

ψ

(

Iu
ωc

)

∂

∂ψ

∣

∣

∣

∣

ϑ

+O
(

δ∗
2Θ−2

)

when acting on equilibrium quantities.
To analyse equation (27) further, we introduce the

dimensionless system considered in equation 19 of [19].
Equation (27) then becomes





ŵ

L̂q
p̂ϕΘ (λc−λ)− ρ̂ϑω̂D−

1
2

〈

R2B2
0

I2
ρ̂ϑ
û
∂Φ̂

∂ψ̂

∣

∣

∣

∣

∣

ϑ,ξ

〉pϕ

ϑ





∂g0
∂ξ

∣

∣

∣

∣

pϕ,ϑ,λ,V






1
2

〈

R2B2
0

I2
ρ̂ϑ
û
∂Φ̂

∂ξ

∣

∣

∣

∣

∣

ψ,ϑ

〉pϕ

ϑ

+
1
q

〈

ρ̂2ϑ

(

β̂ ′ + 2β̂
ŵ

L̂B

)

V̂2

û

(

û+
λB0

2
V̂2

û

)

∂B0

B0∂ϑ

∣

∣

∣

∣

ψ,ϕ

〉pϕ

ϑ

− ŵ

4L̂q

〈

n
B2
ϑ

BϕB0

(

1+
qs
q

B2
ϕ

B2
ϑ

)

sin(nξ)− 1
q

I

R2B2
0

∂ (RB0)

∂ϑ

∣

∣

∣

∣

ψ,ϕ

cos(nξ)

〉pϕ

ϑ

}

∂g0
∂p̂ϕ

∣

∣

∣

∣

ϑ,ξ,λ,V

+
λ

q

〈

ρ̂ϑ
ŝ2

û

(

β̂ ′ + 2β̂
ŵ

L̂B

)

∂B0

B0∂ϑ

∣

∣

∣

∣

ψ,ϕ

〉pϕ

ϑ

∂g0
∂λ

∣

∣

∣

∣

pϕ,ϑ,ξ,V

= Ĉg0 +O
(

∆3f0
)

. (28)

Here hats denote normalised quantities: ψ̂ = ψ/wψ ,
p̂ϕ = pϕ/wψ , ŵ= wψ/ψs, V̂= V/Vt and û= u/Vt. ρ̂ϑ =
IVt/(ωcwψ) is the normalised particle poloidal Larmor radius.
Φ̂ = eΦ/Te is the normalised perturbed electrostatic poten-
tial with e and Te being the electron charge and equilibrium
temperature, respectively. We have introduced β̂ ′ and ϑ̂ ′ as
β̂ ≡ µ0peqm/B2

0 and ϑ differentiated with respect to ψ̂. Ĉ is the
normalised right hand side collision operator of equation (27).
The normalised drift frequency is defined as

ρ̂ϑω̂D =− ŵ

L̂q
⟨ρ̂ϑû⟩pϕϑ +

〈

R2B2
0

I2
ρ̂ϑŵ

L̂B

(

û+
λB0

2
V̂2

û

)〉pϕ

ϑ

+

〈

ϑ̂ ′R
2B2
ϑ

I2
ρ̂ϑ

(

û+
λB0

2
V̂2

û

)

∂B0

B0∂ϑ

∣

∣

∣

∣

ψ,ϕ

〉pϕ

ϑ

+

〈

R2B2
0

I2
ρ̂ϑû

(

β̂ ′ + 2β̂
ŵ

L̂B

)〉pϕ

ϑ

. (29)

Θ denotes the Heaviside step function. L̂q and L̂B are
the normalised safety factor and equilibrium magnetic
field length scales, respectively: L̂−1

q = (q ′
s/q)ψs and L̂

−1
B =

(ψs/B0)∂B0/∂ψ.

6.2. Drift magnetic islands. RDK-NTM formulation

Equation (28) is equivalent to

[

ŵ

L̂q
p̂ϕΘ (λc−λ)− ρ̂ϑω̂D

−
1
2

∂

∂p̂ϕ

∣

∣

∣

∣

ϑ,ξ

〈

R2B2
0

I2
ρ̂ϑ
û
Φ̂

〉pϕ

ϑ

]

∂g0
∂ξ

∣

∣

∣

∣

S,ϑ,λ,V

= Ĉg0 −
λ

q

〈

ρ̂ϑ
ŝ2

û

(

β̂ ′ + 2β̂
ŵ

L̂B

)

∂B0

B0∂ϑ

∣

∣

∣

∣

ψ,ϕ

〉pϕ

ϑ

∂g0
∂λ

∣

∣

∣

∣

pϕ,ϑ,ξ,V

+O

(

∆3f0
)

, (30)

7
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where

S=
ŵ

4L̂q



2

(

p̂ϕ−
ρ̂ϑω̂DL̂q

ŵ

)2

−
〈

B2
ϑ

BϕB0

(

1+
B2
ϕ

B2
ϑ

)

cos(nξ)+
1
m

I

R2B2
0

∂ (RB0)

∂ϑ

∣

∣

∣

∣

ψ,ϕ

sin(nξ)

〉pϕ

ϑ

]

Θ(λc−λ)

− ρ̂ϑω̂Dp̂ϕΘ(λ−λc)−
1
2

〈

R2B2
0

I2
ρ̂ϑ
û
Φ̂

〉pϕ

ϑ

− n
m

〈

ρ̂2ϑ

(

β̂ ′ + 2β̂
ŵ

L̂B

)

V̂2

û

(

û+
λB0

2
V̂2

û

)

∂B0

B0∂ϑ

∣

∣

∣

∣

ψ,ϕ

〉pϕ

ϑ

ξ,

(31)

provided all equilibrium quantities are slowly varying func-
tions of ψ that can be evaluated at ψs and

〈

R2B2
0

I2
ρ̂ϑ
û
∂Φ̂

∂ψ̂

∣

∣

∣

∣

∣

ϑ,ξ

〉pϕ

ϑ

=
∂

∂p̂ϕ

∣

∣

∣

∣

ϑ,ξ

〈

R2B2
0

I2
ρ̂ϑ
û
Φ̂

〉pϕ

ϑ

,

〈

R2B2
0

I2
ρ̂ϑ
û
∂Φ̂

∂ξ

∣

∣

∣

∣

∣

ψ,ϑ

〉pϕ

ϑ

=
∂

∂ξ

∣

∣

∣

∣

p̂ϕ,ϑ

〈

R2B2
0

I2
ρ̂ϑ
û
Φ̂

〉pϕ

ϑ

.

The normalised electrostatic potential, Φ̂, in equations (28)
and (30) is to be determined iteratively by balancing the
ion and electron densities to ensure plasma quasi-neutrality
[19].9 As was demonstrated in [19], this allows one to retain
both the ion and electron effects on the pressure gradi-
ent physics across the magnetic island. Following [9, 16–
19], we close the system with a collision operator that con-
serves particles and momentum, making equations (30)/(28)
an integro-differential system rather than simply a differen-
tial equation. The solution technique reproduces the one dis-
cussed in [16–18] for the 4D (pϕ, ξ,λ,V)DK-NTMand in [19]
for the low collisional 3D (S,λ,V) RDK-NTM approach. To
solve for the distribution function as a function of S, in [19]
we employweak collisional dissipation in λ space, excluding a
thin boundary layer that surrounds the trapped-passing bound-
ary. In the trapped-passing boundary layer, the perturbative
treatment of collisions becomes invalid since collisional dis-
sipation proportional to steep gradients in pitch angle becomes
comparable to parallel streaming. Therefore, there we solve
the 4D DK-NTM equation, equation (28), exploiting the layer
thinness. This then resolves the discontinuity in the distribu-
tion function and its derivatives across the trapped-passing
boundary that originates from different orbit averaging pro-
cedures for passing and trapped particles in the left hand side
of equation (28).

We note that in contrast to equations 14 and 20 of [19] and
equation 32 of [18], equations (28) and (30) contain some addi-
tional anisotropy associated with the magnetic moment vari-
ation of the Vlasov operator in equation (7). The correspond-
ing term in the drift kinetic equation is proportional to β and

9 Note, the perturbed potential associated with the magnetic island is Φ1 ∼
∆Φ0. Here Φ0 is the equilibrium potential and is assumed to be a function of
ψ only.

thus is typically ordered out for most applications. However, to
allow an extension to a high beta plasmawemust allow finite β
values. While the DK-NTM approach based on equation (28)
retains collisions at the O(∆2 f0) order for a full range of λ
variation and hence does not require any additional limits on
β and β̂ ′, the RDK-NTM approach operates in S space and
treats collisions perturbatively. To allow the leading order dis-
tribution function, g0, to be constant on the contours of fixed
S, similar to [19], we must require

ν∗ ∼ 1
ε

(

β̂ ′ + 2β̂
ŵ

L̂B

)

, (32)

together with ν/εk∥Vt ≪ 1, where ν∗ is the plasma collision-
ality, ν is the particle collision frequency and k∥ is the paral-
lel wave number, for the perturbative treatment of collisions
to be valid. Typical values of ν∗ in the RDK-NTM model
are

(

10−4 − 10−2), therefore β is allowed to vary between
(

10−2 − 1
)

, provided w∼ ρbi ∼ cm and a∼m (metres) with
∆∼ 10−2. At the same time, no sharp spatial variations are
allowed in β̂ ′ in the RDK-NTM model.

In the limit of equations (21) and (32), the contours of con-
stant S in accordance with equation (31) reproduce the shape
of magnetic islands for passing particles, similar to the small
inverse aspect ratio, circular cross section limit considered
in [19]. The non-zero values of β and β̂ ′ increase the mag-
nitude of the radial shift of the constant S island compared
to the magnetic island in equation (29). The effect associ-
ated with the finite β on this radial shift is weaker as β also
appears implicitly in equation (29) via L̂−1

B . As can be seen
from equation (31), the drift island separatrix position also
depends on Bϑ, which makes drift islands wider for stronger
Bϑ, e.g. see figure 1. This then increases the flattening region
of the particle distribution function at σ =±1, which together
with the larger radial shift in S for finite β and β̂ ′ will fur-
ther enhance the stabilising threshold mechanism provided by
passing particles.

6.3. Curvature effects

To describe non-circular shifted finite aspect ratio plasma equi-
libria (e.g. see Figure 2 (a)), we employ the ‘Miller’ formalism
[25]. It provides a local tokamak equilibrium model in terms
of nine parameters, including inverse aspect ratio, elongation
κ, triangularity δ, safety factor and magnetic shear. To specify
the shape of the plasma boundary, we use the conventional
parametrisation for the D-shaped plasmas [25, 26]:

R= R0(r)+ rcos(ϑ+ xsinϑ),

Z= κrsinϑ,
(33)

where x= arcsinδ, and R0(r) includes the Shafranov shift.
The poloidal magnetic field component is parametrised based
on the assumption that the nearby inner closed flux surfaces
are described by equation (33) but with modified values of
R0, κ and δ. It is given by equation 37 of [25]. This makes
Bϑ dependent on κ, δ, sκ (elongation shear), sδ (triangular-
ity shear), ε as well as βϑ (ratio of plasma pressure to poloidal
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Figure 1. Contours of constant S in the (pϕ, ξ) plane in the absence
of the electrostatic potential and the parallel drift effects for deeply
passing particles. The plasma parameters are w= ρϑi = 0.02rs,
V= Vt, L̂q = 1, σ =−1 with the normalised equilibrium density
and temperature gradient length scales respectively Ln/ψs = 1,
LT/ψs = 1 [19] for the m= 2, n= 1 mode. The white curve
indicates the position of the drift island separatrix at

S= ŵ
4L̂q

〈

B2
ϑ

BϕB0

(

1+
B2
ϕ

B2
ϑ

)〉pϕ

ϑ

. Bϑ is reconstructed from the Miller

equilibrium model with ε= 0.1, δ =−0.3 (triangularity) and
κ= 1.0 (elongation) [25]. The green curve represents the drift island
separatrix in the small inverse aspect ratio tokamak approximation
at S= ŵ/4 L̂q in the absence of Bϑ.

magnetic field pressure) and the internal inductance li via ∂rR0

[25].10

We note that while the Miller equilibrium provides a con-
venient analytic model to describe the D-shaped plasma, the
tokamak equilibrium configuration employed to provide the
coefficients in equations (28) and (30) can be generalised
(provided Bϑ/B0 ≪ 1) and can be replaced with one recon-
structed using existing equilibrium solvers (e.g. [28, 29] etc).
For most of the cases considered below, we employ a the-
oretical Miller geometry to explore, in a qualitative way,
the impact of plasma shaping on the threshold. To provide
experimental evidence for our theory, we also study EAST
discharge (number 91972) with the 2/1 NTM excited by res-
onant magnetic perturbations, using a real experimental equi-
librium with plasma parameters consistent with the location of
the mode.

6.3.1. Triangularity effects. In this subsection we investig-
ate the effects of triangularity, including negative triangular-
ity equilibria, on the NTM behaviour. The triangularity enters
the equilibrium magnetic field via equation (33) and there-
fore influences the trapped particle physics via bounce points,
e.g. see figure 2(c). δ also enters equation (29) which, in turn,
influences the radial shift of drift islands for passing particles
in equation (31). As can be seen fromFigure 2(b), ω̂D increases

10 The parameter ∂rR0 written in terms of βϑ and li is derived in [27] for large
aspect ratios. A comparison with numerical equilibria demonstrates that the
result of [27] remains relatively accurate at finite aspect ratio [25].

at decreasing δ and hence the negative triangularity effect
enhances the shift of the drift islands relative to the magnetic
island. This is then expected to increase the stabilising effect
for small islands of widths comparable to the poloidal Larmor
radius [19]. Therefore, one would expect to see an increase in
the NTM threshold island width for lower δ and even perhaps
expect the discharges to be free of NTMs at sufficiently neg-
ative values of δ.

In [19, 30] we consider how the parallel flows that con-
tribute to Ampère’s law parallel to the field lines and thus
to the NTM dispersion relation, vary with ρϑi/w. For small
ρϑi/w, the result is consistent with the conventional theory
of NTMs, i.e. the parallel current is zero inside the mag-
netic island of width w≫ ρϑi which provides a strong NTM
drive. In contrast, as the island width decreases towards val-
ues comparable to the ion poloidal Larmor radius, w≳ ρϑi,
we find that there is some negative (stabilising) flow that pen-
etrates into the island near the X-points (e.g. see figures 3(b)
and 4(b)). It spreads further into the island region with increas-
ing ρϑi/w and competes with growing positive (destabilising)
flows outside the magnetic island separatrix. In figures 3 and 4
we investigate this effect further at different triangularities.
Positive triangularity enhances the destabilising flows outside
the separatrix (see figures 3(c) and 4(c)), while negative tri-
angularity enhances stabilising flows inside the island (see
figures 3(a) and 4(a)) as one would expect from figure 2(b) and
equation (29).

To calculate the threshold island width, we employ the
standard NTM dispersion relation (see equations 32–34 of
[19]), based on Ampère’s law and the magnetic field perturb-
ation in equations (18) and (19). For a single isolated station-
ary magnetic island chain, the classical tearing mode stability
parameter,∆ ′, is balanced against the contribution associated
with the resistive layer currents calculated here (i.e. bootstrap,
curvature and polarisation effects) to provide the threshold.
As we assume no equilibrium electric field, ∆pol only enters
via the perturbed electrostatic potential required to maintain
quasi-neutrality. Calculation of ∆ ′, which depends on the
global equilibrium properties and can generally be treated as
an input in our model, is beyond the scope of this work. Hence,
rather than evaluating the experimental threshold island width,
we define the threshold as a critical island half-width, wc,
above which the localised NTM drives are destabilising. For
w< wc, the island can only be driven by a classical drive,
∆ ′ > 0, which then might be interpreted as a ‘classical’ tear-
ing mode. However, we find that the neoclassical contribu-
tions are typically much larger than ∆ ′ (which is charac-
terised by −2m/rs) for widths only slightly different from
2 wc – in that case the distinction between the experimental
threshold and wc is negligible. Figure 5 shows how different
values of plasma triangularity influence the NTM threshold
island half-width, wc, for a model theoretical Miller geometry
in figures 5 (a) and (b), and for the experimental equilib-
rium reconstruction in figure 5(c). The threshold island width,
2wc, is found to increase with decreasing plasma triangular-
ity, e.g. from 1.82ρbi at δ= 0.42 to 2.90ρbi at δ =−0.5 in
figure 5(b).
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Figure 2. The triangularity effects on the passing (via ω̂D) and trapped (via ϑb) particles.
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Figure 3. Colour contours showing the ion parallel flow, u∥i, in the (ψ,ξ) plane at ρϑi/w= 0.35 at δ =−0.5 (a), δ= 0 (b) and δ= 0.42 (c) in the absence of the parallel drift effects. u∥i is
normalised to the ion thermal velocity. The parameters are V= Vt, ε= 0.1, κ= 1.7, L̂q = 1 with the normalised equilibrium density and temperature gradient length scales Ln/ψs = 1,
LT/ψs = 1 for the m= 2, n= 1 mode. The green curve indicates the position of the magnetic island separatrix. (b) is equivalent to a zero triangularity plasma considered in [19].
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Figure 4. Colour contours showing the parallel current, j∥, in the (ψ,ξ) plane at ρϑi/w= 0.35 at δ =−0.5 (a), δ= 0 (b) and δ= 0.42 (c) in the absence of the parallel drift effects. j∥ is
normalised to en0Vti, where n0 is the equilibrium density and Vti is the ion thermal velocity. The parameters are V= Vt, ε= 0.1, κ= 1.7, L̂q = 1 with the normalised equilibrium density and
temperature gradient length scales Ln/ψs = 1, LT/ψs = 1 for the m= 2, n= 1 mode. The green curve indicates the position of the magnetic island separatrix. (b) is equivalent to a zero
triangularity plasma considered in [19].
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Figure 5. The triangularity effects on the NTM threshold for the m= 2, n= 1 mode: (a) and (b) for a model theoretical Miller geometry and in the absence of the parallel drift effects,
corresponding to figures 3 and 4; (c) for an example equilibrium reconstruction plotted in (d) and in the presence of the parallel drift effects. (a) wc/ρϑi plotted as a function of δ at different ρϑi,
(b) wc plotted as a function of ρϑi at different δ at V= Vt, ν∗ = 10−4, βϑ = 0.5 with the plasma shape characterised by ε= 0.1, κ= 1.7. (c) wc/ρϑi plotted as a function of δ at V= Vt,
ν∗ = 10−3, βϑ = 0.7 with ε= 0.13, κ= 1.25, sκ = 0.07 and L̂q = 0.29 at the 2/1 rational surface. In (c) δ= 0.1 corresponds to the experimental value at the 2/1 rational surface shown as a red
curve in (d) (EAST, discharge number 91972). The experimental equilibrium is fitted to the Miller parametrisation, and then δ is varied in that fit to provide the scan shown in (c). Note, wc and
ρϑi are in rs units.
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6.3.2. Triangularity dependence of the 2/1 NTM onset relative
frequency in DIII-D plasmas. In order to explore the para-
meter dependence of triggering mechanisms and drivers of the
robustly growing regime, we calculated the 2/1 onset relative
frequency with respect to a group of plasma parameters (Xi)
and shape parameters, including elongation (κ) and triangu-
larity (δ).

We assume that every∆τ ≈ 100 ms window of plasma can
be considered as an independent measurement point. Every
stable plasma is then subdivided into ∆τ windows in the cur-
rent flattop, and time averages of Xi within each window are
collected into the database. This is then repeated for the stable
part of the unstable discharges, defined as t< tonset −∆τ , and
compiled into the same stable database. Next, the unstable
database of Xi is assembled from a single ∆τ window pre-
ceding tonset in each unstable discharge. This method yields
an unstable database of 2645 points and a stable database of
509535 points for each Xi. This method produces a large data-
base for each Xi. However, it does not guarantee that the para-
meters vary independently. The latter can be tested by the
pair-correlation coefficient of the Xi and Xj variables in the
stable database (CsXi,Xj). Such correlations can exist either due
to physical relationships between the variables or due to pre-
ferred operational choices in the analysed DIII-D campaigns
(the parameter space is not scanned uniformly, but the experi-
ments are driven by physics goals). We consider therefore the
possibility that the sample sets of the Xi parameters are not all
and not fully independent from each other. We find a relatively
weak correlation though between δ, κ and βϑ: Csδ,βθ

= 0.28,
Csδ,κ = 0.29.

We define the 2/1 onset relative frequency (Ω(Xi)) as:

Ω(Xi) =
Hα(X i)

Hγ(Xi)
, (34)

where Hα(Xi) and Hβ(Xi) are the histograms of Xi calcu-
lated from the unstable and stable database, respectively, and
Hγ(Xi) = Hα(Xi)+Hβ(Xi) is the histogram of the union of
the stable and unstable databases. All histograms are calcu-
lated in 75 points with respect to Xi and the ranges of the Xi

are chosen to cover most of the DIII-D operational space.
Figure 6(a) shows H̄α(Xi) and H̄β(Xi) for Xi = δ, the nor-

malized histograms of the unstable and stable datasets of δ,
respectively:

H̄α(X
i
k) =

Hα(Xik)
∑

kHβ(X
i
k)

(35)

H̄β(X
i
k) =

Hβ(Xik)
∑

kHβ(X
i
k)

(36)

here k indexes the value of the Xi variable . The line graph
in figure 6(b) shows Ω(δ), and Hγ(δ) is shown as a shaded
area in addition. The mode onset is sensitive to the parameter
Xi where |∂XiΩ|> 0. Given the bin size, the sensitivity carries
impact at theXik value ifHγ(X

k
i )⪆ 1%, which covers over 90%

of the plasmas.

Figure 6. (a) Histograms of stable and unstable plasmas, (b) 2/1
NTM onset relative frequency vs. δ.

As can be seen from figure 6(b), the 2/1 island onset
relative frequency increases with plasma triangularity, i.e.
∂δΩ(δ)> 0, which indicates that the higher triangularity
plasma is more prone to the 2/1 islands in DIII-D. The latter
is in agreement with the RDK-NTM prediction discussed in
section 6.3.1, i.e. positive triangularity enhances destabilising
flows, increasing the NTM drive.

6.3.3. Finite aspect ratio effects. In this subsection we
investigate the aspect ratio effects on the NTM threshold phys-
ics, extending the results of [19] obtained in the small inverse
aspect ratio tokamak approximation (see figure 9 of [19]). In
figures 4(b) and 7 we show contours of the parallel current
density at different ε. The larger inverse aspect ratio is found
to further enhance the stabilising flows around the magnetic
island separatrix in addition to the effects of negative triangu-
larity discussed above. In figure 8 we plot wc/ρϑi as a func-
tion of ε. As can be seen from figure 8, wc is proportional to
ε1/2ρϑi = ρbi up to ε≈ 0.3, in agreement with the ε≪ 1 pre-
diction of [19].

The drift island theory employed here is valid for magnetic
islands much smaller than the radius of the rational surface
associated with them, i.e. w≪ rs, and in the limit of low col-
lisions away from the trapped-passing boundary. To allow the
perturbative treatment of collisions, the particle collision fre-
quency is assumed to be much smaller than the free streaming
along the equilibrium magnetic field lines/characteristic drift
frequency. The equilibrium radial electric field is set to zero.
The contribution to the perturbed current density parallel to
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Figure 7. Colour contours showing the parallel current density, j∥, in the (ψ,ξ) plane at ρϑi/w= 0.35 at ε= 0.3 (a), ε= 0.4 (b) and ε= 0.4 (with the employed ε≪ 1 approximation) (c) in the
absence of the parallel drift effects. j∥ is normalised to en0Vti, where n0 is the equilibrium density and V ti is the ion thermal velocity. The parameters are V= Vt, κ= 1.7, δ= 0, L̂q = 1 with the
normalised equilibrium density and temperature gradient length scales Ln/ψs = 1, LT/ψs = 1 for the m= 2, n= 1 mode. The green curve indicates the position of the magnetic island separatrix.
Note, the small inverse aspect ratio approximation, invalid at finite ε, results in L̂−1

B ∝ ε, enhancing negative flows around X-points at higher ε, e.g. see figures 7(b) and (c).
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Figure 8. wc/ρϑi plotted as a function of ε in the absence of the
parallel drift effects. The parameters are V= Vt, δ= 0, κ= 1.7,
ν∗ = 10−3, L̂q = 1 with the normalised equilibrium density and
temperature gradient length scales Ln/ψs = 1, LT/ψs = 1 for the
m= 2, n= 1 mode. Note, ρϑi is in rs units. The orange dashed line
is the best fit line ∝ ε1/2 obtained in the small inverse aspect ratio
tokamak limit [19].

Figure 9. Threshold 2/1 magnetic island width plotted as a
function of βϑ. Markers (square markers for Bϕ < 0 and triangle
markers for Bϕ > 0) indicate the 2/1 NTM threshold for the 91972
EAST discharge [31]. ε= 0.13, κ(rs) = 1.25, δ(rs) = 0.13,
sκ = 0.07, sδ = 0.24 at the 2/1 rational surface. a/R0 = 0.24,
δ= 0.53 and κ= 1.65 at the last closed flux surface (LCFS). rs
indicates the position of the rational surface.

the field lines is then provided by a combination of bootstrap
and curvature physics, as well as polarisation effects associ-
ated with the perturbed electrostatic potential.

As discussed in [16, 18, 19], the particle distribution func-
tion is found to be flattened across drift islands, shifted radi-
ally by a value proportional to the poloidal Larmor radius,
compared to the magnetic island. This then supports a contri-
bution to the density gradient associated with passing ions at
w∼ ρϑi. Since ρϑe ≪ w (ρϑe is the electron poloidal Larmor

radius), the shift of the passing electron drift islands relative
to the magnetic island is small, and therefore the electron
density profile is still flattened across the magnetic island
in the absence of the electrostatic potential. These differing
responses generate a perturbed electrostatic potential to ensure
plasma quasi-neutrality. The perturbed electrostatic potential
together with the matching trapped-passing boundary layer
[19] introduce the trapped particles into the dynamics. The
ε1/2ρϑi scaling of the threshold island width up to ε≈ 0.3
indicates this (see figure 8). At ε> 0.3, corrections associated
with the finite aspect ratio cannot be neglected, and the expan-
sion in powers of ε≪ 1 in the equilibrium magnetic field and
its gradient length scale cannot be applied. wc ∝ ε1/2ρϑi (∼ρbi
in the limit of ε≪ 1) at ε< 0.3 is replaced with the ρϑi scal-
ing of the threshold island width at ε> 0.3 in figure 8. Note,
the fraction of trapped particles is

ft = 1− 3
4

〈

B2
0

〉ψ

ϑ

ˆ λc

0

λdλ
〈√

1−λB0
〉ψ

ϑ

,

where ⟨. . .⟩ψϑ denotes the orbit-averaging operator at fixed ψ.
ft ∼ ε1/2 in the limit of ε≪ 1 becomes ft ∼ ε0.23 for finite
aspect ratios. Therefore, ρbi ∼ ε1/2ρϑi for ε≪ 1 becomes
ρbi ∼ (Θ/ε0.23)ρϑi for ε∼ 1. This suggests that the finite ε
effects in equation 29 enhance the drift island contribution
of passing particles in providing the threshold mechanism for
NTMs.

6.3.4. Poloidal beta effects. In figure 9 we plot the 2/1
NTM threshold as a function of βϑ. As discussed above, βϑ
enters the poloidal magnetic field component via ∂rR0. The ion
poloidal Larmor radius is an input parameter in the RDK-NTM
approach, and provides an additional ∝ β

1/2
ϑ dependence on

poloidal beta. This results in wc being a growing function of
βϑ at fixed ε and q. This dependence is in agreement with the
recent EAST measurements of the critical island width (see
figure 9) for the 2/1 NTM triggered by the resonant magnetic
perturbations [31].

7. Conclusions and future work

We have extended the self-consistent drift island theory
developed in [16–19] to a finite beta, arbitrary tokamak plasma
configuration to capture the plasma shaping effects on the
NTM threshold physics with a particular focus on non-zero
plasma triangularity and finite aspect ratio. We focus on the
neoclassical current perturbations localised in the vicinity of
the rational surface, defining the threshold island half-width,
wc, as the value below which the neoclassical terms are sta-
bilising. As these neoclassical drives exceed ∆ ′ for islands
of half-width w close to wc, the association of wc with the
threshold is reasonable. Plasma shape parameters, including
elongation and triangularity, are known to have a strong impact
on tokamak plasma MHD stability. Triangularity is shown to
influence the radial shift of passing particle drift islands rel-
ative to the magnetic island. This forms a theoretical basis for
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the pressure gradient restoration across the magnetic island O-
point at w∼ ρϑi and hence for the NTM threshold mechan-
ism. Triangularity also influences the trapped particle bounce
points and therefore has a direct impact on the trapped/passing
particle orbits. We find that for magnetic islands of width w≳
ρϑi, positive triangularity enhances destabilising flows outside
the island separatrix, while negative triangularity enhances
stabilising flows around the separatrix in the vicinity of the
X-points. For the equilibrium explored, the threshold island
width is found to increase from 1.8ρbi at δ= 0.4 (in agree-
ment with experimental measurements) to 2.9ρbi at δ =−0.5
(ν∗ = 10−4) for the m/n= 2/1 NTM. As was shown in [19],
the threshold also scales with the tokamak inverse aspect ratio
as ε1/2 in the limit of ε≪ 1. At ε≳ 0.3, the wc ∝ ε1/2ρϑi
scaling of the threshold island width is replaced by wc ∝ ρϑi.
As was discussed in [19], the magnetic drift frequency and
hence the NTM threshold prediction is sensitive to the gradient
length scale of the confiningmagnetic field. The latter depends
on the aspect ratio and plasma beta. The finite aspect ratio
effects are found to enhance the stabilising flows around the
island separatrix and (from thewc ∝ ρϑi scaling at ε≳ 0.3) the
contribution of drift islands associated with passing particles
to the NTM threshold mechanism. Note, the equilibrium radial
electric field is assumed to be zero in the island rest frame.
The only polarisation contribution is then driven by a local-
ised, perturbed electrostatic potential generated by the differ-
ing electron and ion responses. The role of this ion polarisa-
tion current in providing the threshold will be explored in our
future publication.

While this work refines our previous threshold results,
allowing the plasma shaping contribution in addition to the
bootstrap current, the theory has certain limitations. One of
them is related to the assumption that Bϑ/B0 ≪ 1 which is
required to ensure δ∗ ≪∆ or ρi ≪ w∼ ρbi ∼ ε1/2ρϑi. While
this is typically a good approximation for conventional toka-
maks, including for non-circular, finite aspect ratio plasma
equilibria, it might be invalid for certain spherical tokamak
plasma equilibria. While we retain the |∇∇∇⊥| ∼ 1/w (when
acting on perturbed quantities related to the magnetic island
perturbation) terms when calculating the plasma response to
NTMs, certain effects associated with the sharp spatial vari-
ation, |∇∇∇⊥| ∼ 1/ρ, in perturbed quantities might be ordered
out in the drift kinetic approach. To accurately include the
w∼ ρ effects and therefore to allow Bϑ/B0 ∼ 1, the drift kin-
etic theory has to be extended to the gyrokinetic limit whichwe
will explore in future work. Extension to gyrokinetics to cap-
ture the finite Larmor radius effects might be relevant not only
to certain spherical tokamak plasma equilibrium scenarios but
also to the magnetic island separatrix boundary layer problem
and therefore to the polarisation contribution to the threshold
physics when an equilibrium electric field exists; it will also
allow one to investigate the impact of the plasma turbulence
on the layer physics.

In the present paper the dissipation processes are domin-
ated by collisional dissipation in the vicinity of the trapped-
passing boundary. This can be further extended to include
other sources of dissipation, e.g. S diffusion in the separatrix

boundary layer [19],11 error fields/ coupling to a resistive wall
(see e.g. [32, 33]). Furthermore, to make the theory applicable
to a burning plasma of a reactor, one would need to include a
population of fast particles produced by fusion reactions.
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Appendix A. Derivation of the extended drift kinetic
equation

We expand equation (6) in powers of δ∗. The O
(

δ−1
∗

Vt
L f0
)

equation then reads

ωc
∂f0
∂α

∣

∣

∣

∣

xxx,U,µ

= 0, (A.1)

11 This layer provides a significant contribution to current that is out-of-phase
with the magnetic island, which determines how the magnetic island propag-
ates through the plasma, and hence will likely influence the threshold predic-
tion for rotating islands. This will be presented in future publications.

17



Nucl. Fusion 63 (2023) 016020 A.V. Dudkovskaia et al

where we learn that the leading order distribution function, f 0,
is independent of α at fixed xxx. Proceeding to O

(

δ0∗
Vt
L f0
)

, we
write

ωc
∂f1
∂α

∣

∣

∣

∣

xxx,U,µ

+Lf0 = Cf0, (A.2)

where f1 =O
(

δ1∗ f0
)

. Averaging equation (A.2) over α at
fixed xxx and applying equation (A.1), we obtain a drift kinetic
equation to be solved for f 0:

⟨L−C⟩xxxα f0 = 0. (A.3)

Here ⟨. . .⟩xxxα represents 1/(2π)
¸

. . .dα at fixed xxx. Neglect-
ing the difference between C and its gyro-averaged form, we
reduce equation (A.3) to

L̄f0 = Cf0, (A.4)

where L̄ ≡ ⟨L⟩xxxα and is given by

L̄=
∂

∂t
+uuu ·∇∇∇− µ

B
∂B
∂t

∂

∂µ

∣

∣

∣

∣

xxx,U,α

+
eZ
m

(

∂Φ

∂t
−uuu · ∂AAA

∂t

)

∂

∂U

∣

∣

∣

∣

xxx,µ,α

. (A.5)

This form of the drift kinetic equation does not retain the
plasma drift effects and thus we must capture the O

(

δ1∗
Vt
L f0
)

corrections in addition to equation (A.2):

ωc
∂ ( f1 + f2 )

∂α

∣

∣

∣

∣

xxx,U,µ

+L( f0 + f1 ) = C( f0 + f1 ) , (A.6)

where f2 =O
(

δ2∗ f0
)

. Gyro-averaging equation (A.6), we
obtain

L̄f0 + ⟨Lf1⟩xxxα = Cf0 +C⟨ f1⟩xxxα. (A.7)

To obtain f 1, we apply the recursive procedure discussed in
[22] and combine equations (A.2) and (A.4) to write

ωc
∂f1
∂α

∣

∣

∣

∣

xxx,U,µ

= (C−L) f0 +
(

L̄−C
)

f0,

which is equivalent to

∂f1
∂α

∣

∣

∣

∣

xxx,U,µ

=− 1
ωc

L̃f0, (A.8)

where L̃= L− L̄. We note that this is valid only if the differ-
ence betweenC and its gyro-averaged form can be neglected12.
Integrating equation (A.8), we obtain f 1 as a function of f 0:

f1 = ρρρ ·hhh1 + h2 (A.9)

12 In the drift kinetic approach, the gyro-averaging is performed in the absence
of the finite Larmor orbit width effects, i.e. is equivalent to averaging overα at
fixed xxx. For this case, the difference betweenC and ⟨C⟩xxxα can be ignored. It can
be demonstrated that for the like-species Fokker–Planck collision operator,
C= ⟨C⟩xxxα [22].

with

hhh1 =−∇∇∇f0 +
eZ
m

[

∂AAA
∂t

∂f0
∂U

∣

∣

∣

∣

xxx,µ,α

− [bbb×VVVD]
∂f0
∂µ

∣

∣

∣

∣

xxx,U,α

]

(A.10)

and

h2 =
u
2B

{

[(sss ·∇∇∇)bbb] ·ρρρ− s2

2ωc

µ0j∥
B

}

∂f0
∂µ

∣

∣

∣

∣

xxx,U,α

. (A.11)

Here we chose ⟨f1⟩xxxα = 0 as a constraint to determine the con-
stant of integration. Note,

∇∇∇·bbb=−bbb ·∇∇∇ lnB=− [(eee2 ·∇∇∇)eee2 +(eee3 ·∇∇∇)eee3] ·bbb,
µ0j∥
B

= [∇∇∇×bbb] ·bbb= [(eee3 ·∇∇∇)eee2 − (eee2 ·∇∇∇)eee3] ·bbb.
(A.12)

Substituting equation (A.9) into equation (A.7), we obtain an
extended drift kinetic equation for f 0 that captures the plasma
drift effects, equation (12).

Appendix B. The dµ
dt

∣

∣

∣

avg
contribution

A straightforward expression for dµ
dt

∣

∣

∣

avg
that results from

appendix A is

dµ
dt

∣

∣

∣

∣

avg

=−µ
B
∂B
∂t

−µ{∇∇∇ ·VVVE+∇∇∇·VVVd

+(VVVE+VVVd) · [∇∇∇ lnB− (bbb ·∇∇∇)bbb]}

+
2µ
B

[bbb× (bbb ·∇∇∇)bbb] · ∂AAA
∂t
. (B.1)

Substituting equation (15) into equation (B.1), one can show
that

∇∇∇·VVVd+VVVd · [∇∇∇ lnB− (bbb ·∇∇∇)bbb]

=−uµ0j∥
B

(bbb ·∇∇∇)

(

u
ωc

)

− 2
u2

ωc

µ0

B
(jjj⊥ ·∇∇∇ lnB) ,

∇∇∇·VVVE+VVVE · [∇∇∇ lnB− (bbb ·∇∇∇)bbb] =− 1
B
∂B
∂t

− 2VVVE · (bbb ·∇∇∇)bbb

and thus

1
µ

dµ
dt

∣

∣

∣

∣

avg

= u
µ0j∥
B

(bbb ·∇∇∇)

(

u
ωc

)

+ 2
u2

ωc

µ0

B
(jjj⊥ ·∇∇∇ lnB)

+
2
B
[bbb× (bbb ·∇∇∇)bbb] ·

(

EEE+
∂AAA
∂t

)

,

(B.2)

where jjj⊥ is the current density perpendicular to the magnetic
field lines and can be expressed in terms of the plasma pressure
gradient, provided plasma is in MHD equilibrium. To simplify
equation (B.2) further, we cross equation (5) with bbb and aver-
age it over α at fixed xxx. This provides
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1
µ

dµ
dt

∣

∣

∣

∣

avg

= u
µ0j∥
B

(bbb ·∇∇∇)

(

u
ωc

)

+
1
ωc

(

s2 + 2u2
) µ0

B
(jjj⊥ ·∇∇∇ lnB)

+
2
B
[bbb× (bbb ·∇∇∇)bbb] · ∂AAA

∂t

− 2u
ωc

[

bbb× ∂bbb
∂t

]

· (bbb ·∇∇∇)bbb. (B.3)

equation (B.3) can be further reduced to equation (16),
provided∇∇∇· jjj= 0, where jjj= j∥bbb+ jjj⊥ is the total plasma cur-
rent density.

ORCID iDs

A.V. Dudkovskaia https://orcid.org/0000-0001-6890-3079
L. Bardoczi https://orcid.org/0000-0002-8280-2423
J.W. Connor https://orcid.org/0000-0001-9666-6103
D. Dickinson https://orcid.org/0000-0002-0868-211X
P. Hill https://orcid.org/0000-0003-3092-1858
K. Imada https://orcid.org/0000-0002-8128-2438
S. Leigh https://orcid.org/0000-0002-0376-9451
N. Richner https://orcid.org/0000-0001-5544-3915
T. Shi https://orcid.org/0000-0002-5321-1464
H.R. Wilson https://orcid.org/0000-0003-3333-7470

References

[1] Hender T.C. et al 2007 Progression in the ITER Physics Basis.
Chapter 3: MHD stability, operational limits and disruptions
Nucl. Fusion 47 S128–202

[2] Qu W.X. and Callen J.D. 1985 University of Wisconsin report
UWPR 85-5

[3] Carrera R., Hazeltine R.D. and Kotschenreuther M. 1986 Phys.
Fluids 29 899

[4] Poli E. et al 2015 Nucl. Fusion 55 013023
[5] Rutherford P.H. 1973 Phys. Fluids 16 1903–8
[6] Sauter O. et al 1997 Phys. Plasmas 4 1654
[7] Sauter O., Buttery R.J. and Felton R., Hender T.C.,

Howell D.F. and contributors to the EFDA-JET
Workprogramme 2002 Plasma Phys. Control. Fusion
44 1999–2019

[8] Buttery R.J. et al 2000 Plasma Phys. Control. Fusion
42 B61–B73

[9] Wilson H.R., Connor J.W., Hastie R.J. and Hegna C.C. 1996
Phys. Plasmas 3 248

[10] Fitzpatrick R. 1995 Phys. Plasmas 2 825

[11] Hazeltine R.D., Helander P. and Catto P.J. 1997 Phys. Plasmas
4 2920

[12] Poli E., Peeters A.G. and Bergmann A. 2002 Phys. Rev. Lett.
88 075001

[13] Poli E., Peeters A.G. and Bergmann A. et al 2003 Plasma
Phys. Control. Fusion 45 71–87

[14] Poli E., Bottino A., Hornsby W.A., Peeters A.G., Ribeiro T.,
Scott B.D. and Siccinio M. 2010 Plasma Phys. Control.
Fusion 52 124021

[15] Poli E., Bergmann A. and Casson F.J. et al 2016 Plasma Phys.
Rep. 42 450–64

[16] Imada K., Wilson H.R., Connor J.W., Dudkovskaia A.V. and
Hill P. 2018 Phys. Rev. Lett. 121 175001

[17] Imada K., Wilson H.R., Connor J.W., Dudkovskaia A.V. and
Hill P. 2018 J. Phys. Conf. Ser. 1125 012013

[18] Imada K., Wilson H.R., Connor J.W., Dudkovskaia A.V. and
Hill P. 2019 Nucl. Fusion 59 046016

[19] Dudkovskaia A.V., Connor J.W., Dickinson D., Hill P.,
Imada K., Leigh S. and Wilson H.R. 2021 Plasma Phys.
Control. Fusion 63 054001

[20] Kotschenreuther M., Hazeltine R.D. and Morrison P.J. 1985
Phys. Fluids 28 294

[21] Lutjens H., Luciani J.-F. and Garbet X. 2001 Phys. Plasmas
8 4267

[22] Hazeltine R.D. and Meiss J.D. 1992 Plasma Confinement
(New York: Addison-Wesley) p 125

[23] La Haye R.J., Prater R., Buttery R.J., Hayashi N., Isayama A.,
Maraschek M.E., Urso L. and Zohm H. 2006 Nucl. Fusion
46 451–61

[24] La Haye R.J., Buttery R.J. and Gerhardt S.P.,
Sabbagh S.A. and Brennan D.P. 2012 Phys. Plasmas
19 062506

[25] Miller R.L., Chu M.S., Greene J.M., Lin-Liu Y.R. and
Waltz R.E. 1998 Phys. Plasmas 5 973

[26] Todd A.M.M., Manickam J., Okabayashi M., Chance M.S.,
Grimm R.C., Greene J.M. and Johnson J.L. 1979 Nucl.
Fusion 19 743

[27] Lao L.L., Hirshman S.P. and Wieland R.M. 1981 Phys. Fluids
24 1431

[28] Faugeras B. 2020 Fusion Eng. Des. 160 112020
[29] Crotinger J.A., LoDestro L., Pearlstein L.D., Tarditi A.,

Casper T.A. and Hooper E.B. 1997 Corsica: A
Comprehensive Simulation of Toroidal Magnetic-Fusion
Devices Final Report to the LDRD Program
UCRL-ID-126284

[30] Wilson H.R., Connor J.W., Dickinson D., Dudkovskaia A.V.,
Hill P., Imada K. and Leigh S. 2021 Drift-kinetic theory of
neoclassical tearing modes close to the threshold in
tokamak plasmas 28th IAEA Fusion Energy Conf.

[31] Shi T. et al (arXiv:2103.15506) [physics.plasm-ph]
[32] Smolyakov A.I., Hirose A., Lazzaro E., Re G.B. and

Callen J.D. 1995 Phys. Plasmas 5 1581
[33] McAdams R., Wilson H.R. and Chapman I.T. 2013 Nucl.

Fusion 53 083005

19


	Drift kinetic theory of the NTM magnetic islands in a finite beta general geometry tokamak plasma
	1. Introduction
	2. Coordinate system
	3. General kinetic equation in {t, x-.4, U, µ,α}  space
	4. Gyro-averaging. Drift kinetic equation
	5. Magnetic topology
	5.1. Note on drift kinetic ordering in the NTM description

	6. Plasma response
	6.1. DK-NTM formulation
	6.2. Drift magnetic islands. RDK-NTM formulation
	6.3. Curvature effects
	6.3.1. Triangularity effects.
	6.3.2. Triangularity dependence of the 2/1 NTM onset relative frequency in DIII-D plasmas.
	6.3.3. Finite aspect ratio effects.
	6.3.4. Poloidal beta effects.


	7. Conclusions and future work
	Appendix A. Derivation of the extended drift kinetic equation
	Appendix B. The . dµdt |avg  contribution
	References


