423 research outputs found
Impacts of the Madden-Julian oscillation on Australian rainfall and circulation
Impacts of the Madden¿Julian oscillation (MJO) on Australian rainfall and circulation are examined during all four seasons. The authors examine circulation anomalies and a number of different rainfall metrics, each composited contemporaneously for eight MJO phases derived from the real-time multivariate MJO index. Multiple rainfall metrics are examined to allow for greater relevance of the information for applications. The greatest rainfall impact of the MJO occurs in northern Australia in (austral) summer, although in every season rainfall impacts of various magnitude are found in most locations, associated with corresponding circulation anomalies. In northern Australia in all seasons except winter, the rainfall impact is explained by the direct influence of the MJO's tropical convective anomalies, while in winter a weaker and more localized signal in northern Australia appears to result from the modulation of the trade winds as they impinge upon the eastern coasts, especially in the northeast. In extratropical Australia, on the other hand, the occurrence of enhanced (suppressed) rainfall appears to result from induced upward (downward) motion within remotely forced extratropical lows (highs), and from anomalous low-level northerly (southerly) winds that transport moisture from the tropics. Induction of extratropical rainfall anomalies by remotely forced lows and highs appears to operate mostly in winter, whereas anomalous meridional moisture transport appears to operate mainly in the summer, autumn, and to some extent in the sprin
Cosmological Solutions of Higher-Curvature String Effective Theories with Dilatons
We study the effect of higher-curvature terms in the string low-energy
effective actions on the cosmological solutions of the theory, up to
corrections quartic in the curvatures, for the bosonic and heterotic strings as
well as the type II superstring. We find that cosmological solutions exist for
all string types but they always disappear when the dilaton field is included,
a conclusion that can be avoided if string-loop effects are taken into account.Comment: 7 pages, plain Tex with panda.tex macro (included), no figure
Gravitation with superposed Gauss--Bonnet terms in higher dimensions: Black hole metrics and maximal extensions
Our starting point is an iterative construction suited to combinatorics in
arbitarary dimensions d, of totally anisymmetrised p-Riemann 2p-forms (2p\le d)
generalising the (1-)Riemann curvature 2-forms. Superposition of p-Ricci
scalars obtained from the p-Riemann forms defines the maximally Gauss--Bonnet
extended gravitational Lagrangian. Metrics, spherically symmetric in the (d-1)
space dimensions are constructed for the general case. The problem is directly
reduced to solving polynomial equations. For some black hole type metrics the
horizons are obtained by solving polynomial equations. Corresponding Kruskal
type maximal extensions are obtained explicitly in complete generality, as is
also the periodicity of time for Euclidean signature. We show how to include a
cosmological constant and a point charge. Possible further developments and
applications are indicated.Comment: 13 pages, REVTEX. References and Note Adde
Probabilistic forecasts of the onset of the North Australian wet season
The amount and timing of early wet-season rainfall are important for the management of many agricultural industries in north Australia. With this in mind, a wet-season onset date is defined based on the accumulation of rainfall to a predefined threshold, starting from 1 September, for each square of a 1° gridded analysis of daily rainfall across the region. Consistent with earlier studies, the interannual variability of the onset dates is shown to be well related to the immediately preceding July¿August Southern Oscillation index (SOI). Based on this relationship, a forecast method using logistic regression is developed to predict the probability that onset will occur later than the climatological mean date. This method is expanded to also predict the probabilities that onset will be later than any of a range of threshold dates around the climatological mean. When assessed using cross-validated hindcasts, the skill of the predictions exceeds that of climatological forecasts in the majority of locations in north Australia, especially in the Top End region, Cape York, and central Queensland. At times of strong anomalies in the July¿August SOI, the forecasts are reliably emphatic. Furthermore, predictions using tropical Pacific sea surface temperatures (SSTs) as the predictor are also tested. While short-lead (July¿August predictor) forecasts are more skillful using the SOI, long-lead (May¿June predictor) forecasts are more skillful using Pacific SSTs, indicative of the longer-term memory present in the ocean
Жанр эссе полемического характера в публицистическом дискурсе А. Андреева
The accuracy of synoptic-based weather forecasting deteriorates rapidly after five days and is not routinely available beyond 10 days. Conversely, climate forecasts are generally not feasible for periods of less than 3 months, resulting in a weather-climate gap. The tropical atmospheric phenomenon known as the Madden-Julian Oscillation (MJO) has a return interval of 30 to 80 days that might partly fill this gap. Our near-global analysis demonstrates that the MJO is a significant phenomenon that can influence daily rainfall patterns, even at higher latitudes, via teleconnections with broadscale mean sea level pressure (MSLP) patterns. These weather states provide a mechanistic basis for an MJO-based forecasting capacity that bridges the weather-climate divide. Knowledge of these tropical and extra-tropical MJO-associated weather states can significantly improve the tactical management of climate-sensitive systems such as agriculture
Influence of provider factors and race on uptake of breast cancer gene expression profiling
BACKGROUND: Gene expression profiling (GEP) has been rapidly adopted for early breast cancer and can aid in chemotherapy decision making. Study results regarding racial disparities in testing are conflicting, and may reflect different care settings. To the authors' knowledge, data regarding the influence of provider factors on testing are scarce. METHODS: The authors used a statewide, multipayer, insurance claims database linked to cancer registry records to examine the impact of race and provider characteristics on GEP uptake in a cohort of patients newly diagnosed with breast cancer between 2005 and 2012. Incidence proportion models were used to examine the adjusted likelihood of testing. Models were stratified by lymph node status (N0 vs N1). RESULTS: Among 11,958 eligible patients, 23% of black and 26% of non-Hispanic white patients received GEP. Among patients with N0 disease, black individuals were 16% less likely to receive testing after adjustment for clinical factors and the provider's specialty and volume of patients with breast cancer (95% confidence interval, 0.77-0.93). Adjustment for provider characteristics did not attenuate the effect of race on testing. Patients of middle-volume providers were more likely to be tested compared with those with either high-volume or low-volume providers, whereas patients seeing a medical oncologist were more likely to be tested compared with those whose only providers were from surgical specialties. CONCLUSIONS: Provider volume and specialty were found to be significant predictors of GEP use, but did not explain racial disparities in testing. Further research concerning the key contributors to lagging test use among black women is needed to optimize the equitable use of GEPs and support personalized treatment decision making for all patients
Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)
The dissociative adsorption of hydrogen on Pd(100) has been studied by ab
initio quantum dynamics and ab initio molecular dynamics calculations. Treating
all hydrogen degrees of freedom as dynamical coordinates implies a high
dimensionality and requires statistical averages over thousands of
trajectories. An efficient and accurate treatment of such extensive statistics
is achieved in two steps: In a first step we evaluate the ab initio potential
energy surface (PES) and determine an analytical representation. Then, in an
independent second step dynamical calculations are performed on the analytical
representation of the PES. Thus the dissociation dynamics is investigated
without any crucial assumption except for the Born-Oppenheimer approximation
which is anyhow employed when density-functional theory calculations are
performed. The ab initio molecular dynamics is compared to detailed quantum
dynamical calculations on exactly the same ab initio PES. The occurence of
quantum oscillations in the sticking probability as a function of kinetic
energy is addressed. They turn out to be very sensitive to the symmetry of the
initial conditions. At low kinetic energies sticking is dominated by the
steering effect which is illustrated using classical trajectories. The steering
effects depends on the kinetic energy, but not on the mass of the molecules.
Zero-point effects lead to strong differences between quantum and classical
calculations of the sticking probability. The dependence of the sticking
probability on the angle of incidence is analysed; it is found to be in good
agreement with experimental data. The results show that the determination of
the potential energy surface combined with high-dimensional dynamical
calculations, in which all relevant degrees of freedon are taken into account,
leads to a detailed understanding of the dissociation dynamics of hydrogen at a
transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.
Fabrication of Nickel Nanostructure Arrays Via a Modified Nanosphere Lithography
In this paper, we present a modified nanosphere lithographic scheme that is based on the self-assembly and electroforming techniques. The scheme was demonstrated to fabricate a nickel template of ordered nanobowl arrays together with a nickel nanostructure array-patterned glass substrate. The hemispherical nanobowls exhibit uniform sizes and smooth interior surfaces, and the shallow nanobowls with a flat bottom on the glass substrate are interconnected as a net structure with uniform thickness. A multiphysics model based on the level set method (LSM) was built up to understand this fabricating process by tracking the interface between the growing nickel and the electrolyte. The fabricated nickel nanobowl template can be used as a mold of long lifetime in soft lithography due to the high strength of nickel. The nanostructure–patterned glass substrate can be used in optical and magnetic devices due to their shape effects. This fabrication scheme can also be extended to a wide range of metals and alloys
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …