134 research outputs found

    Information-Based Physics: An Observer-Centric Foundation

    Full text link
    It is generally believed that physical laws, reflecting an inherent order in the universe, are ordained by nature. However, in modern physics the observer plays a central role raising questions about how an observer-centric physics can result in laws apparently worthy of a universal nature-centric physics. Over the last decade, we have found that the consistent apt quantification of algebraic and order-theoretic structures results in calculi that possess constraint equations taking the form of what are often considered to be physical laws. I review recent derivations of the formal relations among relevant variables central to special relativity, probability theory and quantum mechanics in this context by considering a problem where two observers form consistent descriptions of and make optimal inferences about a free particle that simply influences them. I show that this approach to describing such a particle based only on available information leads to the mathematics of relativistic quantum mechanics as well as a description of a free particle that reproduces many of the basic properties of a fermion. The result is an approach to foundational physics where laws derive from both consistent descriptions and optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of 43 pages and 9 Figure

    Current Perspective and Advancements of Alginate-Based Transplantation Technologies

    Get PDF
    Versatile yet biocompatible bio-materials are in high demand in nearly every industry, with biological and biomedical engineering relying heavily on common biomaterials like alginate polymers. Alginate is a very common substance found in various marine plants which can easily be extracted and purified through cheap nonhazardous methods. A key characteristic of alginate polymers includes easily manipulatable physical properties due to its inert but functional chemical composition. Factors including its functional versatility, long-term polymer stability and biocompatibility have caused alginate-based technologies to draw major attention from both the scientific and industrial communities alike. While also used in food industry manufacturing and standard dental procedures, this chapter will focus on a discussion of the both clinical and nonclinical use of alginate-based technologies in transplantation for regenerative cell and drug delivery systems. In addition, we overview the immune system response prompted following implantation of alginate hydrogels. Consequences of immune cell reactivity to foreign materials, such as inflammation and the foreign body response (FBR), are also analyzed and current and future strategies for potential circumvention of severe immune responses toward alginate-based devices are reviewed and suggested

    Measurement-based quantum foundations

    Full text link
    I show that quantum theory is the only probabilistic framework that permits arbitrary processes to be emulated by sequences of local measurements. This supports the view that, contrary to conventional wisdom, measurement should not be regarded as a complex phenomenon in need of a dynamical explanation but rather as a primitive -- and perhaps the only primitive -- operation of the theory.Comment: 8 pages, version to appear in Found. Phy

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore