107 research outputs found
Dynamics & Predictions in the Co-Event Interpretation
Sorkin has introduced a new, observer independent, interpretation of quantum
mechanics that can give a successful realist account of the 'quantum
microworld' as well as explaining how classicality emerges at the level of
observable events for a range of systems including single time 'Copenhagen
measurements'. This 'co-event interpretation' presents us with a new ontology,
in which a single 'co-event' is real. A new ontology necessitates a review of
the dynamical & predictive mechanism of a theory, and in this paper we begin
the process by exploring means of expressing the dynamical and predictive
content of histories theories in terms of co-events.Comment: 35 pages. Revised after refereein
Spacetime topology from the tomographic histories approach: Part II
As an inverse problem, we recover the topology of the effective spacetime
that a system lies in, in an operational way. This means that from a series of
experiments we get a set of points corresponding to events. This continues the
previous work done by the authors. Here we use the existence of upper bound in
the speed of transfer of matter and information to induce a partial order on
the set of events. While the actual partial order is not known in our
operational set up, the grouping of events to (unordered) subsets corresponding
to possible histories, is given. From this we recover the partial order up to
certain ambiguities that are then classified. Finally two different ways to
recover the topology are sketched and their interpretation is discussed.Comment: 21 pages, slight change in title and certain minor corrections in
this second version. To apear in IJT
Spacetime topology from the tomographic histories approach I: Non-relativistic Case
The tomographic histories approach is presented. As an inverse problem, we
recover in an operational way the effective topology of the extended
configuration space of a system. This means that from a series of experiments
we get a set of points corresponding to events. The difference between
effective and actual topology is drawn. We deduce the topology of the extended
configuration space of a non-relativistic system, using certain concepts from
the consistent histories approach to Quantum Mechanics, such as the notion of a
record. A few remarks about the case of a relativistic system, preparing the
ground for a forthcoming paper sequel to this, are made in the end.Comment: 19 pages, slight chang in title and corrected typos in second
version. To appear to a special proceedings issue (Glafka 2004) of the
International Journal of Theoretical Physic
Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory
We investigate the possibility of assigning consistent probabilities to sets
of histories characterized by whether they enter a particular subspace of the
Hilbert space of a closed system during a given time interval. In particular we
investigate the case that this subspace is a region of the configuration space.
This corresponds to a particular class of coarse grainings of spacetime
regions. We consider the arrival time problem and the problem of time in
reparametrization invariant theories as for example in canonical quantum
gravity. Decoherence conditions and probabilities for those application are
derived. The resulting decoherence condition does not depend on the explicit
form of the restricted propagator that was problematic for generalizations such
as application in quantum cosmology. Closely related is the problem of
tunnelling time as well as the quantum Zeno effect. Some interpretational
comments conclude, and we discuss the applicability of this formalism to deal
with the arrival time problem.Comment: 23 pages, Few changes and added references in v
Twistor form of massive 6D superparticle
The massive six-dimensional (6D) superparticle with manifest (n, 0) supersymmetry is shown to have a supertwistor formulation in which its “hidden” (0, n) supersymmetry is also manifest. The mass-shell constraint is replaced by Spin(5) spin-shell constraints which imply that the quantum superparticle has zero superspin; for n = 1 it propagates the 6D Proca supermultiplet.PKT acknowledges support from the UK Science and Technology Facilities Council (grant ST/L000385/1). AJR is supported by a grant from the London Mathematical Society.This is the final version of the article. It was first available from IOP Science via http://dx.doi.org/10.1088/1751-8113/49/2/02540
The Generalized Second Law implies a Quantum Singularity Theorem
The generalized second law can be used to prove a singularity theorem, by
generalizing the notion of a trapped surface to quantum situations. Like
Penrose's original singularity theorem, it implies that spacetime is null
geodesically incomplete inside black holes, and to the past of spatially
infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead,
the generalized second law requires that there only be a finite amount of
entropy producing processes in the past, unless there is a reversal of the
arrow of time. In asymptotically flat spacetime, the generalized second law
also rules out traversable wormholes, negative masses, and other forms of
faster-than-light travel between asymptotic regions, as well as closed timelike
curves. Furthermore it is impossible to form baby universes which eventually
become independent of the mother universe, or to restart inflation. Since the
semiclassical approximation is used only in regions with low curvature, it is
argued that the results may hold in full quantum gravity. An introductory
section describes the second law and its time-reverse, in ordinary and
generalized thermodynamics, using either the fine-grained or the coarse-grained
entropy. (The fine-grained version is used in all results except those relating
to the arrow of time.) A proof of the coarse-grained ordinary second law is
given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised
(4.1, 5.2), more comments on AdS. v3: major revisions including change of
title. v4: similar to published version, but with corrections to plan of
paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of
Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new
footnote
Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer
Breast cancer metastasis remains a clinical challenge, even within a single patient across multiple sites of the disease. Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we performed DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients, totaling 83 distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network information with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly established in the primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that most genetic drivers were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless of subtype, and that multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers unique to metastasis were identified as somatic mutations in the estrogen and androgen receptor genes. These results highlight the complexity of metastatic spreading, be it monoclonal or multiclonal, and suggest that most metastatic drivers are established in the primary tumor, despite the substantial heterogeneity seen in the metastases
Invariant class operators in the decoherent histories analysis of timeless quantum theories
The decoherent histories approach to quantum theory is applied to a class of reparametrization invariant models, which includes systems described by the Klein-Gordon equation, and by a minisuperspace Wheeler-DeWitt equation. A key step in this approach is the construction of class operators characterizing the questions of physical interest, such as the probability of the system entering a given region of configuration space without regard to time. In non-relativistic quantum mechanics these class operators are given by time-ordered products of projection operators. But in reparametrization invariant models, where there is no time, the construction of the class operators is more complicated, the main difficulty being to find operators which commute with the Hamiltonian constraint (and so respect the invariance of the theory). Here, inspired by classical considerations, we put forward a proposal for the construction of such class operators for a class of reparametrization-invariant systems. They consist of continuous infinite temporal products of Heisenberg picture projection operators. We investigate the consequences of this proposal in a number of simple models and also compare with the evolving constants method
2- and 3-substituted imidazo [1,2-a] pyrazines as inhibitors of bacterial type IV secretion
A novel series of 8-amino imidazo[1,2-a]pyrazine derivatives has been developed as inhibitors of the VirB11 ATPase HP0525, a key component of the bacterial type IV secretion system. A flexible synthetic route to both 2- and 3-aryl substituted regioisomers has been developed. The resulting series of imidazo[1,2-a]pyrazines has been used to probe the structure–activity relationships of these inhibitors, which show potential as antibacterial agents
Robustness and device independence of verifiable blind quantum computing
Recent advances in theoretical and experimental quantum computing bring us
closer to scalable quantum computing devices. This makes the need for protocols
that verify the correct functionality of quantum operations timely and has led
to the field of quantum verification. In this paper we address key challenges
to make quantum verification protocols applicable to experimental
implementations. We prove the robustness of the single server verifiable
universal blind quantum computing protocol of Fitzsimons and Kashefi (2012) in
the most general scenario. This includes the case where the purification of the
deviated input state is in the hands of an adversarial server. The proved
robustness property allows the composition of this protocol with a
device-independent state tomography protocol that we give, which is based on
the rigidity of CHSH games as proposed by Reichardt, Unger and Vazirani (2013).
The resulting composite protocol has lower round complexity for the
verification of entangled quantum servers with a classical verifier and, as we
show, can be made fault tolerant.Comment: Shortly before uploading the first version on the arxiv, the authors
became aware of parallel and independent research by Hajdusek, Perez-Delgado
and Fitzsimons, which also addresses device-independent verifiable blind
quantum computing and appeared the same day on the arxi
- …