327 research outputs found

    Chromatic Signals Control Proboscis Movements during Hovering Flight in the Hummingbird Hawkmoth Macroglossum stellatarum

    Get PDF
    Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general

    The early bee catches the flower - circadian rhythmicity influences learning performance in honey bees, Apis mellifera

    Get PDF
    Circadian rhythmicity plays an important role for many aspects of honey bees’ lives. However, the question whether it also affects learning and memory remained unanswered. To address this question, we studied the effect of circadian timing on olfactory learning and memory in honey bees Apis mellifera using the olfactory conditioning of the proboscis extension reflex paradigm. Bees were differentially conditioned to odours and tested for their odour learning at four different “Zeitgeber” time points. We show that learning behaviour is influenced by circadian timing. Honey bees perform best in the morning compared to the other times of day. Additionally, we found influences of the light condition bees were trained at on the olfactory learning. This circadian-mediated learning is independent from feeding times bees were entrained to, indicating an inherited and not acquired mechanism. We hypothesise that a co-evolutionary mechanism between the honey bee as a pollinator and plants might be the driving force for the evolution of the time-dependent learning abilities of bees

    Symmetry breaking in mass-recruiting ants: extent of foraging biases depends on resource quality

    Get PDF
    The communication involved in the foraging behaviour of social insects is integral to their success. Many ant species use trail pheromones to make decisions about where to forage. The strong positive feedback caused by the trail pheromone is thought to create a decision between two or more options. When the two options are of identical quality, this is known as symmetry breaking, and is important because it helps colonies to monopolise food sources in a competitive environment. Symmetry breaking is thought to increase with the quantity of pheromone deposited by ants, but empirical studies exploring the factors affecting symmetry breaking are limited. Here, we tested if (i) greater disparity between two food sources increased the degree to which a higher quality food source is favoured and (ii) if the quality of identical food sources would affect the degree of symmetry breaking that occurs. Using the mass-recruiting Pharaoh ant, Monomorium pharaonis, we carried out binary choice tests to investigate how food quality affects the choice and distribution of colony foraging decisions. We found that colonies could coordinate foraging to exploit food sources of greater quality, and a greater contrast in quality between the food sources created a stronger collective decision. Contrary to prediction, we found that symmetry breaking decreased as the quality of two identical food sources increased. We discuss how stochastic effects might lead to relatively strong differences in the amount of pheromone on alternative routes when food source quality is low. Significance statement: Pheromones used by social insects should guide a colony via positive feedback to distribute colony members at resources in the most adaptive way given the current environment. This study shows that when food resources are of equal quality, Pharaoh ant foragers distribute themselves more evenly if the two food sources are both of high quality compared to if both are of low quality. The results highlight the way in which individual ants can modulate their response to pheromone trails which may lead colonies to exploiting resources more evenly when in a resource rich environment

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    Get PDF
    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation

    Toll-Like Receptor 3 (TLR3) Plays a Major Role in the Formation of Rabies Virus Negri Bodies

    Get PDF
    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3−/− mice—in which brain tissue was less severely infected—had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV–induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit

    Transforming growth factor-β and breast cancer: Tumor promoting effects of transforming growth factor-β

    Get PDF
    The transforming growth factor (TGF)-βs are potent growth inhibitors of normal epithelial cells. In established tumor cell systems, however, the preponderant experimental evidence suggests that TGF-βs can foster tumor-host interactions that indirectly support the viability and/or progression of cancer cells. The timing of this 'TGF-β switch' during the progressive transformation of epithelial cells is not clear. More recent evidence also suggests that autocrine TGF-β signaling is operative in some tumor cells, and can also contribute to tumor invasiveness and metastases independent of an effect on nontumor cells. The dissociation of antiproliferative and matrix associated effects of autocrine TGF-β signaling at a transcriptional level provides for a mechanism(s) by which cancer cells can selectively use this signaling pathway for tumor progression. Data in support of the cellular and molecular mechanisms by which TGF-β signaling can accelerate the natural history of tumors will be reviewed in this section

    Gene Expression and Functional Studies of the Optic Nerve Head Astrocyte Transcriptome from Normal African Americans and Caucasian Americans Donors

    Get PDF
    To determine whether optic nerve head (ONH) astrocytes, a key cellular component of glaucomatous neuropathy, exhibit differential gene expression in primary cultures of astrocytes from normal African American (AA) donors compared to astrocytes from normal Caucasian American (CA) donors.We used oligonucleotide Affymetrix microarray (HG U133A & HG U133A 2.0 chips) to compare gene expression levels in cultured ONH astrocytes from twelve CA and twelve AA normal age matched donor eyes. Chips were normalized with Robust Microarray Analysis (RMA) in R using Bioconductor. Significant differential gene expression levels were detected using mixed effects modeling and Statistical Analysis of Microarray (SAM). Functional analysis and Gene Ontology were used to classify differentially expressed genes. Differential gene expression was validated by quantitative real time RT-PCR. Protein levels were detected by Western blots and ELISA. Cell adhesion and migration assays tested physiological responses. Glutathione (GSH) assay detected levels of intracellular GSH.Multiple analyses selected 87 genes differentially expressed between normal AA and CA (P<0.01). The most relevant genes expressed in AA were categorized by function, including: signal transduction, response to stress, ECM genes, migration and cell adhesion.These data show that normal astrocytes from AA and CA normal donors display distinct expression profiles that impact astrocyte functions in the ONH. Our data suggests that differences in gene expression in ONH astrocytes may be specific to the development and/or progression of glaucoma in AA
    corecore