75 research outputs found
Paul Nizan: conspiracy and the contemplation of crime
Paul Nizan (1905-1940) is also known in France as the âimpossible communistâ, for his long-term allegiance to the Party and the abrupt cancellation of his membership, in the late 1930s, following the Nazi-Soviet pact. This paper discusses a number of his writings, focusing particularly on his best known novel, The Conspiracy, where a revolutionary cell plans illegal political action. Conflict, nihilism, suicide and betrayal are among the topics stemming from the novel, which will be examined from a criminological perspective. The analysis will primarily address âculturalâ aspects of crime and refer to notions such as âthrillâ and âseductions of crimeâ among others. These notions, it will be argued, require some revision in the face of the imagined or actual criminality described in the novel
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Body composition-derived BMI cut-offs for overweight and obesity in Indians and Creoles of Mauritius: comparison with Caucasians
Global estimates of overweight and obesity prevalence are based on the World Health Organisation (WHO) body mass index (BMI) cut-off values of 25 and 30âkgâmâ»ÂČ, respectively. To validate these BMI cut-offs for adiposity in the island population of Mauritius, we assessed the relationship between BMI and measured body fat mass in this population according to gender and ethnicity.Methods: In 175 young adult Mauritians (age 20-42 years) belonging to the two main ethnic groupsâIndians (South Asian descent) and Creoles (African/Malagasy descent), body weight, height and waist circumference (WC) were measured, total body fat assessed by deuterium oxide (D2O) dilution and trunk (abdominal) fat by segmental bioimpedance analysis.Results: Compared to body fat% predicted from BMI using Caucasian-based equations, body fat% assessed by D2O dilution in Mauritians was higher by 3â5 units in Indian men and women as well as in Creole women, but not in Creole men. This gender-specific ethnic difference in body composition between Indians and Creoles is reflected in their BMIâFat% relationships, as well as in their WCâTrunk Fat% relationships. Overall, WHO BMI cut-offs of 25 and 30âkgâmâ»ÂČ for overweight and obesity, respectively, seem valid only for Creole men (~24 and 29.5, respectively), but not for Creole women whose BMI cut-offs are 2â4 units lower (21â22 for overweight; 27â28 for obese) nor for Indian men and women whose BMI cut-offs are 3â4 units lower (21â22 for overweight; 26â27 for obese).Conclusions: The use of BMI cut-off points for classifying overweight and obesity need to take into account both ethnicity and gender to avoid gross adiposity status misclassification in this population known to be at high risk for type-2 diabetes and cardiovascular diseases. This is particularly of importance in obesity prevention strategies both in clinical medicine and public health
Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord
BACKGROUND: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. METHODOLOGY/PRINCIPAL FINDINGS: We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. CONCLUSIONS/SIGNIFICANCE: We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord
Post-mortem volatiles of vertebrate tissue
Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted
Rotating Stars in Relativity
Rotating relativistic stars have been studied extensively in recent years,
both theoretically and observationally, because of the information one could
obtain about the equation of state of matter at extremely high densities and
because they are considered to be promising sources of gravitational waves. The
latest theoretical understanding of rotating stars in relativity is reviewed in
this updated article. The sections on the equilibrium properties and on the
nonaxisymmetric instabilities in f-modes and r-modes have been updated and
several new sections have been added on analytic solutions for the exterior
spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating
stars in numerical relativity.Comment: 101 pages, 18 figures. The full online-readable version of this
article, including several animations, will be published in Living Reviews in
Relativity at http://www.livingreviews.org
Binary Black Hole Mergers in the first Advanced LIGO Observing Run
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range . These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections
Recommended from our members
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ⌠2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone
Observation of Gravitational Waves from a Binary Black Hole Merger
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 Ă 10â21. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.1Ï. The source lies at a luminosity distance of 410ĂŸ160
â180 Mpc corresponding to a redshift z ÂŒ 0.09ĂŸ0.03 â0.04 .
In the source frame, the initial black hole masses are 36ĂŸ5
â4Mâ and 29ĂŸ4
â4Mâ, and the final black hole mass is
62ĂŸ4
â4Mâ, with 3.0ĂŸ0.5 â0.5Mâc2 radiated in gravitational waves. All uncertainties define 90% credible intervals.
These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger
Inclusive photon production at forward rapidities in proton\u2013proton collisions at 1a s = 0.9, 2.76 and 7 TeV
The multiplicity and pseudorapidity distribu- tions of inclusive photons have been measured at forward rapidities (2.3 < \u3b7 < 3.9) in proton\u2013proton collisions at three center-of-mass energies, 1as = 0.9, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multi- plicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2 \ub1 0.3% (stat) \ub1 8.8% (sys) and 61.2 \ub1 0.3% (stat) \ub1 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are com- pared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in par- ticular at the highest center-of-mass energy. Limiting frag- mentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range
- âŠ