714 research outputs found

    Yielding and irreversible deformation below the microscale: Surface effects and non-mean-field plastic avalanches

    Get PDF
    Nanoindentation techniques recently developed to measure the mechanical response of crystals under external loading conditions reveal new phenomena upon decreasing sample size below the microscale. At small length scales, material resistance to irreversible deformation depends on sample morphology. Here we study the mechanisms of yield and plastic flow in inherently small crystals under uniaxial compression. Discrete structural rearrangements emerge as series of abrupt discontinuities in stress-strain curves. We obtain the theoretical dependence of the yield stress on system size and geometry and elucidate the statistical properties of plastic deformation at such scales. Our results show that the absence of dislocation storage leads to crucial effects on the statistics of plastic events, ultimately affecting the universal scaling behavior observed at larger scales.Comment: Supporting Videos available at http://dx.plos.org/10.1371/journal.pone.002041

    Hierarchy Theory of Evolution and the Extended Evolutionary Synthesis: Some Epistemic Bridges, Some Conceptual Rifts

    Get PDF
    Contemporary evolutionary biology comprises a plural landscape of multiple co-existent conceptual frameworks and strenuous voices that disagree on the nature and scope of evolutionary theory. Since the mid-eighties, some of these conceptual frameworks have denounced the ontologies of the Modern Synthesis and of the updated Standard Theory of Evolution as unfinished or even flawed. In this paper, we analyze and compare two of those conceptual frameworks, namely Niles Eldredge’s Hierarchy Theory of Evolution (with its extended ontology of evolutionary entities) and the Extended Evolutionary Synthesis (with its proposal of an extended ontology of evolutionary processes), in an attempt to map some epistemic bridges (e.g. compatible views of causation; niche construction) and some conceptual rifts (e.g. extra-genetic inheritance; different perspectives on macroevolution; contrasting standpoints held in the “externalism–internalism” debate) that exist between them. This paper seeks to encourage theoretical, philosophical and historiographical discussions about pluralism or the possible unification of contemporary evolutionary biology

    How taphonomic alteration affects the detection and imaging of striations in stab wounds

    Get PDF
    Stabbing with a kitchen knife is a common methodof homicide in Europe. Serrated knives may leave tool mark-ings (striations) in tissues. Documentation of striations is nec-essary for their use as forensic evidence. Traditional methods(physical casting and photography) have significant limita-tions, and micro-computed tomography (micro-CT) has beentrialled in cartilage toBvirtually cast^wounds. Previous re-search has shown the proportion of striations in cartilage fallsfollowing decomposition. This project has investigated theeffects of taphonomic alteration and documentation methodsof striations in porcine skin. Fresh, decomposed, mummified,burnt and waterlogged stab wounds in a porcine analoguewere excised and imaged using photography, stereo-opticalmicroscopy and micro-CT. The proportion of striations ineach taphonomic group was determined from the images byindependent analysts. Striations were observed more frequent-ly in serrated blade wounds, although they were also identifiedin non-serrated blade wounds. The proportion of woundsshowing striations declined following decomposition. An in-versely proportional linear correlation between advancing de-composition and proportion of striations existed. Dehydration(mummification and burning) rendered serrated and non-serrated blade wounds indistinguishable. Water compositionaffected the preservation of striations. Identification ofstriations gradually declined after decomposition in tap water,but persisted to a point when left in brackish water. All threetechniques imaged striations; however, the optimum tech-nique was stereo-optical microscopy due to practical advan-tages and specific limitations affecting photography and mi-cro-CT. This study demonstrates the effects of taphonomicalteration on striations and suggests stereo-optical microscopyis the optimum method for their documentation

    Backward walking training improves balance in school-aged boys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls remain a major cause of childhood morbidity and mortality. It is suggested that backward walking (BW) may offer some benefits especially in balance and motor control ability beyond those experienced through forward walking (FW), and may be a potential intervention for prevention of falls. The objective of this study was to investigate the effects of BW on balance in boys.</p> <p>Methods</p> <p>Sixteen healthy boys (age: 7.19 ± 0.40 y) were randomly assigned to either an experimental or a control group. The experimental group participated in a BW training program (12-week, 2 times weekly, and 25-min each time) but not the control group. Both groups had five dynamic balance assessments with a Biodex Stability System (anterior/posterior, medial/lateral, and overall balance index) before, during and after the training (week- 0, 4, 8, 12, 24). Six control and six experimental boys participated in a study comparing kinematics of lower limbs between FW and BW after the training (week-12).</p> <p>Results</p> <p>The balance of experimental group was better than that of control group after 8 weeks of training (<it>P </it>< 0.01), and was still better than that of control group (<it>P </it>< 0.05), when the BW training program had finished for 12 weeks. The kinematic analysis indicated that there was no difference between control and experimental groups in the kinematics of both FW and BW gaits after the BW training (<it>P </it>> 0.05). Compared to FW, the duration of stance phase of BW tended to be longer, while the swing phase, stride length, walking speed, and moving ranges of the thigh, calf and foot of BW decreased (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Backward walking training in school-aged boys can improve balance.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A linkage study of candidate loci in familial Parkinson's Disease

    Get PDF
    BACKGROUND: Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease. Most cases are sporadic, however familial cases do exist. We examined 12 families with familial Parkinson's disease ascertained at the Movement Disorder clinic at the Oregon Health Sciences University for genetic linkage to a number of candidate loci. These loci have been implicated in familial Parkinson's disease or in syndromes with a clinical presentation that overlaps with parkinsonism, as well as potentially in the pathogenesis of the disease. METHODS: The examined loci were PARK3, Parkin, DRD (dopa-responsive dystonia), FET1 (familial essential tremor), BDNF (brain-derived neurotrophic factor), GDNF (glial cell line-derived neurotrophic factor), Ret, DAT1 (the dopamine transporter), Nurr1 and Synphilin-1. Linkage to the α-synuclein gene and the Frontotemporal dementia with parkinsonism locus on chromosome 17 had previously been excluded in the families included in this study. Using Fastlink, Genehunter and Simwalk both parametric and model-free non-parametric linkage analyses were performed. RESULTS: In the multipoint parametric linkage analysis lod scores were below -2 for all loci except FET1 and Synphilin-1 under an autosomal dominant model with incomplete penetrance. Using non-parametric linkage analysis there was no evidence for linkage, although linkage could not be excluded. A few families showed positive parametric and non-parametric lod scores indicating possible genetic heterogeneity between families, although these scores did not reach any degree of statistical significance. CONCLUSIONS: We conclude that in these families there was no evidence for linkage to any of the loci tested, although we were unable to exclude linkage with both parametric and non-parametric methods

    Accounting for a Quantitative Trait Locus for Plasma Triglyceride Levels: Utilization of Variants in Multiple Genes

    Get PDF
    For decades, research efforts have tried to uncover the underlying genetic basis of human susceptibility to a variety of diseases. Linkage studies have resulted in highly replicated findings and helped identify quantitative trait loci (QTL) for many complex traits; however identification of specific alleles accounting for linkage remains elusive. The purpose of this study was to determine whether with a sufficient number of variants a linkage signal can be fully explained.We used comprehensive fine-mapping using a dense set of single nucleotide polymorphisms (SNPs) across the entire quantitative trait locus (QTL) on human chromosome 7q36 linked to plasma triglyceride levels. Analyses included measured genotype and combined linkage association analyses.Screening this linkage region, we found an over representation of nominally significant associations in five genes (MLL3, DPP6, PAXIP1, HTR5A, INSIG1). However, no single genetic variant was sufficient to account for the linkage. On the other hand, multiple variants capturing the variation in these five genes did account for the linkage at this locus. Permutation analyses suggested that this reduction in LOD score was unlikely to have occurred by chance (p = 0.008).With recent findings, it has become clear that most complex traits are influenced by a large number of genetic variants each contributing only a small percentage to the overall phenotype. We found that with a sufficient number of variants, the linkage can be fully explained. The results from this analysis suggest that perhaps the failure to identify causal variants for linkage peaks may be due to multiple variants under the linkage peak with small individual effect, rather than a single variant of large effect
    corecore