53 research outputs found

    Observation of Bs-Bsbar Oscillations

    Get PDF
    We report the observation of Bs-Bsbar oscillations from a time-dependent measurement of the Bs-Bsbar oscillation frequency Delta ms. Using a data sample of 1 fb^-1 of p-pbar collisions at sqrt{s}=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron, we find signals of 5600 fully reconstructed hadronic Bs decays, 3100 partially reconstructed hadronic Bs decays, and 61500 partially reconstructed semileptonic Bs decays. We measure the probability as a function of proper decay time that the Bs decays with the same, or opposite, flavor as the flavor at production, and we find a signal for Bs-Bsbar oscillations. The probability that random fluctuations could produce a comparable signal is 8 X 10^-8, which exceeds 5 sigma significance. We measure Delta ms = 17.77 +- 0.10 (stat) +- 0.07 (syst) ps^-1 and extract |Vtd/Vts| = 0.2060 +- 0.0007 (exp) + 0.0081 - 0.0060 (theor).Comment: 9 pages, 5 figures, submitted to Physical Review Letter

    Measurement of the Ratio of Branching Fractions B(D0 -> K+ pi-)/B(D0 -> K- pi+) using the CDF II Detector

    Get PDF
    We present a measurement of R_B, the ratio of the branching fraction for the rare decay D0 -> K+ pi- to that for the Cabibbo-favored decay D0 -> K- pi+. Charge conjugate decays are implicitly included. A signal of 2005 +/- 104 events for the decay D0 -> K+ pi- is obtained using the CDF II detector at the Fermilab Tevatron collider. The data set corresponds to an integrated luminosity of 0.35 1/fb produced in p-bar/p collisions at sqrt{s}=1.96 TeV. Assuming no mixing, we find R_B = [ 4.05 +/- 0.21 (stat) +/- 0.11 (syst) ] x 10(-3). This measurement is consistent with the world average, and comparable in accuracy with the best measurements from other experiments.Comment: 7 pages, 3 figure

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=7 TeV

    Get PDF
    This is the pre-print version of the Published Article which can be accessed from the link below.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at √s=7  TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dNch/dη||η|<0.5=5.78±0.01(stat)±0.23(syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from √s=0.9 to 7 TeV is [66.1±1.0(stat)±4.2(syst)]%. The mean transverse momentum is measured to be 0.545±0.005(stat)±0.015(syst)  GeV/c. The results are compared with similar measurements at lower energies

    Precision Measurement of the X(3872) Mass in J/psi pi+ pi- Decays

    Get PDF
    We present an analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi+ pi- using 2.4 fb^-1 of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6 MeV/c^2. Under the single-state model the X(3872) mass is measured to be 3871.61 +- 0.16 (stat) +- 0.19 (syst) MeV/c^2, which is the most precise determination to date.We present an analysis of the mass of the X(3872) reconstructed via its decay to J/ψπ+π- using 2.4  fb-1 of integrated luminosity from pp̅ collisions at √s=1.96  TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6  MeV/c2. Under the single-state model the X(3872) mass is measured to be 3871.61±0.16(stat)±0.19(syst)  MeV/c2, which is the most precise determination to date.Peer reviewe

    Search for the rare decay B-0 ->tau(+)tau(-) at BABAR

    Get PDF
    We present the results of a search for the decay B-0 ->tau(+)tau(-) in a data sample of (232 +/- 3)x10(6) Upsilon(4S)-> BB decays using the BABAR detector. Certain extensions of the standard model predict measurable levels of this otherwise rare decay. We reconstruct fully one neutral B meson and seek evidence for the signal decay in the rest of the event. We find no evidence for signal events and obtain B(B-0 ->tau(+)tau(-))< 4.1x10(-3) at the 90% confidence level

    Search for Dijet Resonances in 7 TeV pp Collisions at CMS (vol 105, 211801, 2010)

    Get PDF
    Publisher’s Note: Search for Dijet Resonances in 7 TeV pp Collisions at CMS [Phys. Rev. Lett. 105, 211801 (2010)

    Search for the decay B+ -> tau(+)nu(tau)

    Get PDF
    Contains fulltext : 128262.pdf (publisher's version ) (Open Access

    Measurement of the D+->pi(+) pi(0) and D+-> K+ pi(0) branching fractions

    Get PDF
    Contains fulltext : 128229.pdf (publisher's version ) (Open Access

    Branching fraction limits for B-0 decays to eta ' eta, eta 'pi(0) and eta pi(0)

    Get PDF
    Contains fulltext : 128244.pdf (publisher's version ) (Open Access

    Search for Z \u27 -\u3e e(+) e(-) using dielectron mass and angular distribution

    Get PDF
    We search for Z(\u27) bosons in dielectron events produced in p (p) over bar collisions at root s=1.96 TeV, using 0.45 fb(-1) of data accumulated with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. To identify the Z(\u27)-\u3e e(+)e(-) signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used. No evidence of a signal is found, and 95% confidence level lower limits are set on the Z(\u27) mass for several models. Limits are also placed on the mass and gauge coupling of a generic Z(\u27), as well as on the contact-interaction mass scales for different helicity structure scenarios
    corecore