50 research outputs found

    EM-OLAP Framework - Econometric Model Transformation Method for OLAP Design in Intelligence Systems

    Get PDF
    Econometrics is currently one of the most popular approaches to economic analysis. To better support advances in these areas as much as possible, it is necessary to apply econometric problems to econometric intelligent systems. The article describes an econometric OLAP framework that supports the design of a multidimensional database to secure econometric analyses to increase the effectiveness of the development of econometric intelligent systems. The first part of the article consists of the creation of formal rules for the new transformation of the econometric model (TEM) method for the econometric model transformation of multidimensional schema through the use of mathematical notation. In the proposed TEM method, the authors pay attention to the measurement of quality and understandability of the multidimensional schema, and compare the proposed method with the original TEM-CM method. In the second part of the article, the authors create a multidimensional database prototype according to the new TEM method and design an OLAP application for econometric Analysis

    Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides

    Get PDF
    Wild emmer wheat, Triticum turgidum ssp. dicoccoides is the wild relative of Triticum turgidum, the progenitor of durum and bread wheat, and maintains a rich allelic diversity among its wild populations. The lack of adequate genetic and genomic resources, however, restricts its exploitation in wheat improvement. Here, we report next-generation sequencing of the flow-sorted chromosome 5B of T. dicoccoides to shed light into its genome structure, function and organization by exploring the repetitive elements, protein-encoding genes and putative microRNA and tRNA coding sequences. Comparative analyses with its counterparts in modern and wild wheats suggest clues into the B-genome evolution. Syntenic relationships of chromosome 5B with the model grasses can facilitate further efforts for fine-mapping of traits of interest. Mapping of 5B sequences onto the root transcriptomes of two additional T. dicoccoides genotypes, with contrasting drought tolerances, revealed several thousands of single nucleotide polymorphisms, of which 584 shared polymorphisms on 228 transcripts were specific to the drought-tolerant genotype. To our knowledge, this study presents the largest genomics resource currently available for T. dicoccoides, which, we believe, will encourage the exploitation of its genetic and genomic potential for wheat improvement to meet the increasing demand to feed the world

    Kaon photoproduction: background contributions, form factors and missing resonances

    Get PDF
    The photoproduction p(gamma, K+)Lambda process is studied within a field-theoretic approach. It is shown that the background contributions constitute an important part of the reaction dynamics. We compare predictions obtained with three plausible techniques for dealing with these background contributions. It appears that the extracted resonance parameters drastically depend on the applied technique. We investigate the implications of the corrections to the functional form of the hadronic form factor in the contact term, recently suggested by Davidson and Workman (Phys. Rev. C 63, 025210). The role of background contributions and hadronic form factors for the identification of the quantum numbers of ``missing'' resonances is discussed.Comment: 11 pages, 7 eps figures, submitted to Phys. Rev.

    Rht18 semidwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content

    Get PDF
    Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b. In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth"mutants showed that they contained independent mutations in the coding region of GA2oxA9. GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110. Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9

    Electrohydrodynamic printing as a method to micropattern large titanium implant surfaces with photocrosslinkable structures

    Get PDF
    Metallic implants are widely used in orthopaedic and orthodontic applications. However, generally surface treatment of the metallic surfaces is necessary to render them more biologically active. Herein, we describe a direct write printing method to modify metallic implant surfaces with biocompatible polymers with microscale precision. Application of polymeric micropatterns on metallic implant surfaces can (i) improve their interaction with the host tissue, (ii) enable the delivery of growth factors, antibiotics, anti-inflammatory cytokines etc from the implant surface and (iii) can control the immune responses to the implant via controlling the attachment of immune cells, such as macrophages. Surface patterns with a resolution of less than 50 μm can be created using an electro hydrodynamic (EHD) printing, a template-free and single-step process. We present a revised EHD printing method for the deposition of parallel strips of photocrosslinkable, cell adhesive polymeric composites with spacing of around 20 μm onto medical grade titanium substrates. Optimization of voltage, feeding rate and collection speed resulted in regular structures via very rapid movement of the grounded rotating collector driven to equivalent of the linear surface speed of above 100 cm s−1. In the experimental part a mixture of chemically modified PEG /gelatin was deposited onto a conductive titanium substrate with different surface pretreatments with an area of 400 mm2. Acid etched or UV treated titanium surfaces improved the stability of the printed structures. Polymeric lines induced temporary orientation of human monocytes (THP-1) and induced a thicker cell multilayer formation by 3T3 fibroblasts (p < 0.05). Staining of the monocytes for M1(CD80) and M2 (CD206) macrophage markers on the patterned surface showed mixed populations with higher anti-inflammatory cytokine secretion compared to tissue culture plastic control. The results demonstrate the suitability of this method for the preparation of biomaterials with structured surfaces on large areas and with desired chemical composition

    Proof-of-concept trial results of the HeartMan mobile personal health system for self-management in congestive heart failure

    Get PDF
    This study tested the effectiveness of HeartMan—a mobile personal health system offering decisional support for management of congestive heart failure (CHF)—on health-related quality of life (HRQoL), self-management, exercise capacity, illness perception, mental and sexual health. A randomized controlled proof-of-concept trial (1:2 ratio of control:intervention) was set up with ambulatory CHF patients in stable condition in Belgium and Italy. Data were collected by means of a 6-min walking test and a number of standardized questionnaire instruments. A total of 56 (34 intervention and 22 control group) participants completed the study (77% male; mean age 63 years, sd 10.5). All depression and anxiety dimensions decreased in the intervention group (p &lt; 0.001), while the need for sexual counselling decreased in the control group (p &lt; 0.05). Although the group differences were not significant, self-care increased (p &lt; 0.05), and sexual problems decreased (p &lt; 0.05) in the intervention group only. No significant intervention effects were observed for HRQoL, self-care confidence, illness perception and exercise capacity. Overall, results of this proof-of-concept trial suggest that the HeartMan personal health system significantly improved mental and sexual health and self-care behaviour in CHF patients. These observations were in contrast to the lack of intervention effects on HRQoL, illness perception and exercise capacity

    Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient

    Get PDF
    In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.publishedVersio

    The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! [Commentary]

    Get PDF
    The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken

    Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.

    Get PDF
    Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. `Morex' was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).Peer reviewe
    corecore