886 research outputs found

    Role of Pcf11 post-translational modifications in gene expression

    Get PDF
    mRNA export is one of the major steps in the regulation of gene expression as it provides the link between gene transcription in the nucleus and mRNA translation in the cytoplasm. Efficient export of mRNAs requires the formation of mRNPs at the sites of transcription consisting of the mRNA in complex with export and transcription factors. Formation of the mRNPs is tightly coupled with the co-transcriptional processes of capping, splicing and polyadenylation of the transcript. Our work focuses on the core termination factor Pcf11, a component of the Cleavage Factor II complex in mammals. Pcf11 is an essential protein in yeast and it has been shown to participate in 3' end formation of the transcript (cleavage and polyadenylation) as well as in the release of RNA polymerase II from the DNA. We discovered the phosphorylation of 2 residues in the CID domain of human Pcf11. The CID domain is responsible for the interaction of the factor with the CTD domain of RNA polymerase II. Furthermore, we identified Wnk1 as the kinase responsible for this phosphorylation. Our experiments show that phosphorylation of Pcf11 CID by Wnk1 disrupts its interaction with RNA polymerase II. Further analysis of Wnk1 and its role in the nucleus revealed that this kinase participates in mRNA export. We propose a model, where phosphorylation of Pcf11 CID by Wnk1 is required for proper mRNP assembly and release from the site of transcription. Our data identify a new role for Wnk1 in gene expression regulation through mRNA export and new insights into the cross-talk between transcription termination and mRNA export

    WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription

    Get PDF
    Nuclear gene transcription is coordinated with transcript release from the chromatin template and messenger RNA export to the cytoplasm. We describe the role of nuclear localized kinase WNK1 in the mammalian mRNA export pathway, even though previously established as a critical regulator of ion homeostasis in the cytoplasm. Our data reveal that WNK1 phosphorylates the termination factor PCF11 on its RNA polymerase II (Pol II) CTD interacting domain (CID). Furthermore, phosphorylation of PCF11 CID weakens its interaction with Pol II. We predict that WNK1 and the associated phosphorylation of the PCF11 CID acts to promote transcript release from chromatin-associated Pol II. This in turn facilitates mRNA export to the cytoplasm

    Biodistribution, clearance, and long‐term fate of clinically relevant nanomaterials

    Get PDF
    Realization of the immense potential of nanomaterials for biomedical applications will require a thorough understanding of how they interact with cells, tissues, and organs. There is evidence that, depending on their physicochemical properties and subsequent interactions, nanomaterials are indeed taken up by cells. However, the subsequent release and/or intracellular degradation of the materials, transfer to other cells, and/or translocation across tissue barriers are still poorly understood. The involvement of these cellular clearance mechanisms strongly influences the long-term fate of used nanomaterials, especially if one also considers repeated exposure. Several nanomaterials, such as liposomes and iron oxide, gold, or silica nanoparticles, are already approved by the American Food and Drug Administration for clinical trials; however, there is still a huge gap of knowledge concerning their fate in the body. Herein, clinically relevant nanomaterials, their possible modes of exposure, as well as the biological barriers they must overcome to be effective are reviewed. Furthermore, the biodistribution and kinetics of nanomaterials and their modes of clearance are discussed, knowledge of the long-term fates of a selection of nanomaterials is summarized, and the critical points that must be considered for future research are addressed

    Adapting Medical Guidelines to Be Patient-centered Using a Patient-driven Process for Individuals With Sickle Cell Disease and Their Caregivers

    Get PDF
    Background: Evidence-based guidelines for sickle cell disease (SCD) health maintenance and management have been developed for primary health care providers, but not for individuals with SCD. To improve the quality of care delivered to individuals with SCD and their caregivers, the main purposes of this study were to: (1) understand the desire for patient-centered guidelines among the SCD community; and (2) adapt guideline material to be patient-centered using community-engagement strategies involving health care providers, community -based organizations, and individuals with the disease. Methods: From May–December 2016, a volunteer sample of 107 individuals with SCD and their caregivers gave feedback at community forums (n = 64) and community listening sessions (n = 43) about technology use for health information and desire for SCD-related guidelines. A team of community research partners consisting of community stakeholders, individuals living with SCD, and providers and researchers (experts) in SCD at nine institutions adapted guidelines to be patient-centered based on the following criteria: (1) understandable, (2) actionable, and (3) useful. Results: In community forums (n = 64), almost all participants (91%) wanted direct access to the content of the guidelines. Participants wanted guidelines in more than one format including paper (73%) and mobile devices (79%). Guidelines were adapted to be patient-centered. After multiple iterations of feedback, 100% of participants said the guidelines were understandable, most (88%) said they were actionable, and everyone (100%) would use these adapted guidelines to discuss their medical care with their health care providers. Conclusions: Individuals with SCD and their caregivers want access to guidelines through multiple channels, including technology. Guidelines written for health care providers can be adapted to be patient-centered using Community-engaged research involving providers and patients. These patient-centered guidelines provide a framework for patients to discuss their medical care with their health care providers

    Spliceosome-mediated decay (SMD) regulates expression of nonintronic genes in budding yeast

    Get PDF
    We uncovered a novel role for the spliceosome in regulating mRNA expression levels that involves splicing coupled to RNA decay, which we refer to as spliceosome-mediated decay (SMD). Our transcriptome-wide studies identified numerous transcripts that are not known to have introns but are spliced by the spliceosome at canonical splice sites in Saccharomyces cerevisiae. Products of SMD are primarily degraded by the nuclear RNA surveillance machinery. We demonstrate that SMD can significantly down-regulate mRNA levels; splicing at canonical splice sites in the bromodomain factor 2 (BDF2) transcript reduced transcript levels roughly threefold by generating unstable products that are rapidly degraded by the nuclear surveillance machinery. Regulation of BDF2 mRNA levels by SMD requires Bdf1, a functionally redundant Bdf2 paralog that plays a role in recruiting the spliceosome to the BDF2 mRNA. Interestingly, mutating BDF2 5′ splice site and branch point consensus sequences partially suppresses the bdf1Δ temperature-sensitive phenotype, suggesting that maintaining proper levels of Bdf2 via SMD is biologically important. We propose that the spliceosome can also repress protein-coding gene expression by promoting nuclear turnover of spliced RNA products and provide an insight for coordinated regulation of Bdf1 and Bdf2 levels in the cell

    Correlated response to selection for litter size environmental variability in rabbits' resilience

    Full text link
    [EN] Resilience is the ability of an animal to return soon to its initial productivity after facing diverse environmental challenges. This trait is directly related to animal welfare and it plays a key role in fluctuations of livestock productivity. A divergent selection experiment for environmental variance of litter size has been performed successfully in rabbits over ten generations. The objective of this study was to analyse resilience indicators of stress and disease in the divergent lines of this experiment. The high line showed a lower survival rate at birth than the low line (-4.1%). After correcting by litter size, the difference was -3.2%. Involuntary culling rate was higher in the high than in the low line (+12.4%). Before vaccination against viral haemorrhagic disease or myxomatosis, concentration of lymphocytes, C-reactive protein (CRP), complement C3, serum bilirubin, triglycerides and cholesterol were higher in the high line than in the low line (difference between lines +4.5%, +5.6 mu g/ml, +4.6 mg/ml, +7.9 mmol/l, +0.3 mmol/l and +0.4 mmol/l). Immunological and biochemical responses to the two vaccines were similar. After vaccination, the percentage of lymphocytes and CRP concentration were higher in the low line than in the high one (difference between lines +4.0% and +13.1 mu g/ml). The low line also showed a higher increment in bilirubin and triglycerides than the high line (+14.2 v. +8.7 mmol/l for bilirubin and +0.11 v. +0.01 mmol/l for triglycerides); these results would agree with the protective role of bilirubin and triglycerides against the larger inflammatory response found in this line. In relation to stress, the high line had higher basal concentration of cortisol than the low line (+0.2ng/ml); the difference between lines increased more than threefold after the injection of ACTH 1 to 24, the increase being greater in the high line (+0.9 ng/ml) than in the low line (+0.4 ng/ml). Selection for divergent environmental variability of litter size leads to dams with different culling rate for reproductive causes and different kits' neonatal survival. These associations suggest that the observed fitness differences are related to differences in the inflammatory response and the corticotrope response to stress, which are two important components of physiological adaptation to environmental aggressions.This study is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) with the Projects AGL2014-55921, C2-1-P and C2-2-P, and AGL2017-86083, C2-1-P and C2-2-P.Argente, M.; Garcia, M.; Zbynovska, K.; Petruska, P.; Capcarova, M.; Blasco Mateu, A. (2019). Correlated response to selection for litter size environmental variability in rabbits' resilience. Animal. 13(10):2348-2355. https://doi.org/10.1017/S1751731119000302S234823551310Glaser, R., & Kiecolt-Glaser, J. K. (2005). Stress-induced immune dysfunction: implications for health. Nature Reviews Immunology, 5(3), 243-251. doi:10.1038/nri1571Markanday, A. (2015). Acute Phase Reactants in Infections: Evidence-Based Review and a Guide for Clinicians. Open Forum Infectious Diseases, 2(3). doi:10.1093/ofid/ofv098Rauw, W. ., Kanis, E., Noordhuizen-Stassen, E. ., & Grommers, F. . (1998). Undesirable side effects of selection for high production efficiency in farm animals: a review. Livestock Production Science, 56(1), 15-33. doi:10.1016/s0301-6226(98)00147-xPiles, M., García, M. L., Rafel, O., Ramon, J., & Baselga, M. (2006). Genetics of litter size in three maternal lines of rabbits: Repeatability versus multiple-trait models. Journal of Animal Science, 84(9), 2309-2315. doi:10.2527/jas.2005-622Guelfi, G., Zerani, M., Brecchia, G., Parillo, F., Dall’Aglio, C., Maranesi, M., & Boiti, C. (2011). Direct actions of ACTH on ovarian function of pseudopregnant rabbits. Molecular and Cellular Endocrinology, 339(1-2), 63-71. doi:10.1016/j.mce.2011.03.017García ML , Blasco A , García ME and Argente MJ 2018. Body condition and energy mobilisation in rabbits selected for litter size variability. Animal, 1–6, https://doi.org/10.1017/S1751731118002203, Published online by Cambridge University Press 28 August 2018.Furze, R. C., & Rankin, S. M. (2008). Neutrophil mobilization and clearance in the bone marrow. Immunology, 125(3), 281-288. doi:10.1111/j.1365-2567.2008.02950.xMcDade, T. W., Borja, J. B., Kuzawa, C. W., Perez, T. L. L., & Adair, L. S. (2015). C-reactive protein response to influenza vaccination as a model of mild inflammatory stimulation in the Philippines. Vaccine, 33(17), 2004-2008. doi:10.1016/j.vaccine.2015.03.019Blasco, A. (2017). Bayesian Data Analysis for Animal Scientists. doi:10.1007/978-3-319-54274-4Castellini, C., Dal Bosco, A., Arias-Álvarez, M., Lorenzo, P. L., Cardinali, R., & Rebollar, P. G. (2010). The main factors affecting the reproductive performance of rabbit does: A review. Animal Reproduction Science, 122(3-4), 174-182. doi:10.1016/j.anireprosci.2010.10.003Rosa Neto, N. S., & Carvalho, J. F. de. (2009). O uso de provas de atividade inflamatória em reumatologia. Revista Brasileira de Reumatologia, 49(4), 413-430. doi:10.1590/s0482-50042009000400008Argente, M. J., Calle, E. W., García, M. L., & Blasco, A. (2017). Correlated response in litter size components in rabbits selected for litter size variability. Journal of Animal Breeding and Genetics, 134(6), 505-511. doi:10.1111/jbg.12283Mirkena, T., Duguma, G., Haile, A., Tibbo, M., Okeyo, A. M., Wurzinger, M., & Sölkner, J. (2010). Genetics of adaptation in domestic farm animals: A review. Livestock Science, 132(1-3), 1-12. doi:10.1016/j.livsci.2010.05.003García, M. L., Blasco, A., & Argente, M. J. (2016). Embryologic changes in rabbit lines selected for litter size variability. Theriogenology, 86(5), 1247-1250. doi:10.1016/j.theriogenology.2016.04.065Feingold KR and Grunfeld C 2015. The effect of inflammation and infection on lipids and lipoproteins. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F and Vinik A. Endotext, South Dartmouth, MA, USA. Retrieved on 7 June 2018 from https://www.ncbi.nlm.nih.gov/books/NBK326741/.Minemura, M. (2014). Liver involvement in systemic infection. World Journal of Hepatology, 6(9), 632. doi:10.4254/wjh.v6.i9.632Knap, P. W. (2005). Breeding robust pigs. Australian Journal of Experimental Agriculture, 45(8), 763. doi:10.1071/ea05041Barcia, A. M., & Harris, H. W. (2005). Triglyceride-Rich Lipoproteins as Agents of Innate Immunity. Clinical Infectious Diseases, 41(Supplement_7), S498-S503. doi:10.1086/432005Webster, J. I., Tonelli, L., & Sternberg, E. M. (2002). NEUROENDOCRINEREGULATION OFIMMUNITY. Annual Review of Immunology, 20(1), 125-163. doi:10.1146/annurev.immunol.20.082401.104914Fortun-Lamothe, L. (2006). Energy balance and reproductive performance in rabbit does. Animal Reproduction Science, 93(1-2), 1-15. doi:10.1016/j.anireprosci.2005.06.009Cabezas, S., Blas, J., Marchant, T. A., & Moreno, S. (2007). Physiological stress levels predict survival probabilities in wild rabbits. Hormones and Behavior, 51(3), 313-320. doi:10.1016/j.yhbeh.2006.11.004De Nardo, D., Labzin, L. I., Kono, H., Seki, R., Schmidt, S. V., Beyer, M., … Latz, E. (2013). High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nature Immunology, 15(2), 152-160. doi:10.1038/ni.2784BURKUŠ, J., KAČMAROVÁ, M., KUBANDOVÁ, J., KOKOŠOVÁ, N., FABIANOVÁ, K., FABIAN, D., … ČIKOŠ, Š. (2015). Stress exposure during the preimplantation period affects blastocyst lineages and offspring development. Journal of Reproduction and Development, 61(4), 325-331. doi:10.1262/jrd.2015-012Posthouwer, D., Voorbij, H. A. M., Grobbee, D. E., Numans, M. E., & van der Bom, J. G. (2004). Influenza and pneumococcal vaccination as a model to assess C-reactive protein response to mild inflammation. Vaccine, 23(3), 362-365. doi:10.1016/j.vaccine.2004.05.035Ibáñez-Escriche, N., Sorensen, D., Waagepetersen, R., & Blasco, A. (2008). Selection for Environmental Variation: A Statistical Analysis and Power Calculations to Detect Response. Genetics, 180(4), 2209-2226. doi:10.1534/genetics.108.091678Colditz, I. G., & Hine, B. C. (2016). Resilience in farm animals: biology, management, breeding and implications for animal welfare. Animal Production Science, 56(12), 1961. doi:10.1071/an15297Blasco, A., Martínez-Álvaro, M., García, M.-L., Ibáñez-Escriche, N., & Argente, M.-J. (2017). Selection for environmental variance of litter size in rabbits. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-017-0323-4Argente MJ , Santacreu MA , Climen A and Blasco A 2000. Genetic correlations between litter size and uterine capacity. In Proceeding of the 8th World Rabbit Congress, 4–7 July 2000, Valencia, Spain, pp. 333–338.Janssens, C. J., Helmond, F. A., & Wiegant, V. M. (1995). Chronic stress and pituitary–adrenocortical responses to corticotropin-releasing hormone and vasopressin in female pigs. European Journal of Endocrinology, 132(4), 479-486. doi:10.1530/eje.0.132047
    corecore