20 research outputs found

    Evidence for Cosmic Ray Acceleration in Cassiopeia A

    Get PDF
    Combining archival data taken at radio and infrared wavelengths with state-of-the-art measurements at X-ray and gamma-ray energies, we assembled a broadband spectral energy distribution (SED) of Cas A, a young supernova remnant. Except for strong thermal emission at infrared and X-ray wavelengths, the SED is dominated by non-thermal radiation. We attempted to model the non-thermal SED with a two-zone leptonic model which assumes that the radio emission is produced by electrons that are uniformly distributed throughout the remnant while the non-thermal X-ray emission by electrons that are localized in regions near the forward shock. Synchrotron emission from the electrons can account for data from radio to X-ray wavelengths. Much of the GeV-TeV emission can also be explained by a combination of bremsstrahlung emission and inverse-Compton scattering (mainly of infrared thermal photons). However, the model cannot fit a distinct feature at GeV energies. This feature can be well accounted for by adding a pion-zero emission component to the model, providing evidence for cosmic ray production in Cas A. We discuss the implications of the results.Comment: 16 pages, 4 figure

    The GMRT EoR Experiment: Limits on Polarized Sky Brightness at 150 MHz

    Get PDF
    The GMRT reionization effort aims to map out the large scale structure of the Universe during the epoch of reionization (EoR). Removal of polarized Galactic emission is a difficult part of any 21 cm EoR program, and we present new upper limits to diffuse polarized foregrounds at 150 MHz. We find no high significance evidence of polarized emission in our observed field at mid galactic latitude (J2000 08h26m+26). We find an upper limit on the 2-dimensional angular power spectrum of diffuse polarized foregrounds of [l^2 C_l/(2 PI)]^{1/2}< 3K in frequency bins of width 1 MHz at 300<l<1000. The 3-dimensional power spectrum of polarized emission, which is most directly relevant to EoR observations, is [k^3 P_p(k)/(2 PI^2)]^{1/2} 0.03 h/Mpc, k < 0.1 h/Mpc. This can be compared to the expected EoR signal in total intensity of [k^3 P(k)/ (2 PI^2) ]^{1/2} ~ 10 mK. We find polarized structure is substantially weaker than suggested by extrapolation from higher frequency observations, so the new low upper limits reported here reduce the anticipated impact of these foregrounds on EoR experiments. We discuss Faraday beam and depth depolarization models and compare predictions of these models to our data. We report on a new technique for polarization calibration using pulsars, as well as a new technique to remove broadband radio frequency interference. Our data indicate that, on the edges of the main beam at GMRT, polarization squint creates ~ 3% leakage of unpolarized power into polarized maps at zero rotation measure. Ionospheric rotation was largely stable during these solar minimum night time observations.Comment: 17 pages, 6 figures, 2 tables; changed figures, added appendices. To appear in MNRA

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources

    Full text link
    (Abridged) We present WMAP seven-year observations of bright sources which are often used as calibrators at microwave frequencies. Ten objects are studied in five frequency bands (23 - 94 GHz): the outer planets (Mars, Jupiter, Saturn, Uranus and Neptune) and five fixed celestial sources (Cas A, Tau A, Cyg A, 3C274 and 3C58). The seven-year analysis of Jupiter provides temperatures which are within 1-sigma of the previously published WMAP five-year values, with slightly tighter constraints on variability with orbital phase, and limits (but no detections) on linear polarization. Scaling factors are provided which, when multiplied by the Wright Mars thermal model predictions at 350 micron, reproduce WMAP seasonally averaged observations of Mars within ~2%. An empirical model is described which fits brightness variations of Saturn due to geometrical effects and can be used to predict the WMAP observations to within 3%. Seven-year mean temperatures for Uranus and Neptune are also tabulated. Uncertainties in Uranus temperatures are 3%-4% in the 41, 61 and 94 GHz bands; the smallest uncertainty for Neptune is ~8% for the 94 GHz band. Intriguingly, the spectrum of Uranus appears to show a dip at ~30 GHz of unidentified origin, although the feature is not of high statistical significance. Flux densities for the five selected fixed celestial sources are derived from the seven-year WMAP sky maps, and are tabulated for Stokes I, Q and U, along with polarization fraction and position angle. Fractional uncertainties for the Stokes I fluxes are typically 1% to 3%. Source variability over the seven-year baseline is also estimated. Significant secular decrease is seen for Cas A and Tau A: our results are consistent with a frequency independent decrease of about 0.53% per year for Cas A and 0.22% per year for Tau A.Comment: 72 pages, 21 figures; accepted to ApJS; (v2) corrected Mars model scaling factors, added figure 21, added text to Mars, Saturn and celestial sources section

    Time-dependent modeling of pulsar wind nebulae: Study on the impact of the diffusion-loss approximations

    Full text link
    In this work, we present a leptonic, time-dependent model of pulsar wind nebulae (PWNe). The model seeks a solution for the lepton distribution function considering the full time-energy dependent diffusion-loss equation. The time-dependent lepton population is balanced by injection, energy losses, and escape. We include synchrotron, inverse Compton (IC, with the cosmic-microwave background as well as with IR/optical photon fields), self-synchrotron Compton (SSC), and bremsstrahlung processes, all devoid of any radiative approximations. With this model in place we focus on the Crab nebula as an example and present its time dependent evolution. Afterwards, we analyze the impact of different approximations made at the level of the diffusion-loss equation, as can be found in the literature. Whereas previous models ignored the escape term, e.g., with the diffusion-loss equation becoming advective, others approximated the losses as catastrophic, so that the equation has only time derivatives. Additional approximations are also described and computed. We show which is the impact of these approaches in the determination of the PWN evolution. In particular, we find the time-dependent deviation of the multi-wavelength spectrum and the best-fit parameters obtained with the complete and the approximate models.Comment: In press in MNRA

    Galactic electrons and positrons at the Earth:new estimate of the primary and secondary fluxes

    Get PDF
    We analyse predictions of the CR lepton fluxes at the Earth of both secondary and primary origins, evaluate the theoretical uncertainties, and determine their level of consistency with respect to the available data. For propagation, we use a relativistic treatment of the energy losses for which we provide useful parameterizations. We compute the secondary components by improving on the method that we derived earlier for positrons. For primaries, we estimate the contributions from astrophysical sources (supernova remnants and pulsars) by considering all known local objects within 2 kpc and a smooth distribution beyond. We find that the electron flux in the energy range 5-30 GeV is well reproduced by a smooth distant distribution of sources with index γ2.32.4\gamma\sim 2.3-2.4, while local sources dominate the flux at higher energy. For positrons, local pulsars have an important effect above 5-10 GeV. Uncertainties affecting the source modeling and propagation are degenerate and each translates into about one order of magnitude error in terms of local flux. The spectral shape at high energy is weakly correlated with the spectral indices of local sources, but more strongly with the hierarchy in their distance, age and power. Despite the large theoretical errors that we describe, our global and self-consistent analysis can explain all available data without over-tuning the parameters, and therefore without the need to consider any exotic physics. Though a \emph{standard paradigm} of Galactic CRs is well established, our results show that we can hardly talk about any \emph{standard model} of CR leptons, because of the very large theoretical uncertainties. Our analysis provides details about the impact of these uncertainties, thereby sketching a roadmap for future improvements.Comment: 34 pages, 14 figures. V2: few changes, results unchanged; matches the version accepted in Astron. Astrophy

    AMI observations of northern supernova remnants at 14-18 GHz

    Full text link
    We present observations between 14.2 and 17.9 GHz of 12 reported supernova remnants (SNRs) made with the Arcminute Microkelvin Imager Small Array (AMI SA). In conjunction with data from the literature at lower radio frequencies, we determine spectra of these objects. For well-studied SNRs (Cas A, Tycho's SNR, 3C58 and the Crab Nebula), the results are in good agreement with spectra based on previous results. For the less well-studied remnants the AMI SA observations provide higher-frequency radio observations than previously available, and better constrain their radio spectra. The AMI SA results confirm a spectral turnover at ~11 GHz for the filled-centre remnant G74.9+1.2. We also see a possible steepening of the spectrum of the filled-centre remnant G54.1+0.3 within the AMI SA frequency band compared with lower frequencies. We confirm that G84.9+0.5, which had previously been identified as a SNR, is rather an HII region and has a flat radio spectrum.Comment: 12 pages, 24 figures, accepted MNRA

    Low-frequency radio absorption in Cassiopeia A

    Get PDF
    Cassiopeia A is one of the best-studied supernova remnants. Its shocked ejecta emits brightly in radio and X-rays. Its unshocked ejecta can be studied through infrared emission, the radio-active decay of 44^{44}Ti, and low frequency free-free absorption due to cold gas internal to the shell. Free-free absorption is affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies constrain a combination of these properties. We use LOFAR LBA observations at 30-77 MHz and L-band VLA observations to compare uvu-v-matched images with a common resolution of 17". We simultaneously fit, per pixel, for the emission measure and the ratio of the emission from the unabsorbed front of the shell versus the absorbed back of the shell. We explore the effects that low temperatures and a high degree of clumping can have on the derived physical properties, such as mass and density. We also compile published radio flux measurements, fit for the absorption processes that occur in the radio band, and consider how they affect the secular decline of the source. We find a mass in the unshocked ejecta of M=2.95±0.48MM = 2.95 \pm {0.48} \,M_{\odot} for an assumed gas temperature of T=100T=100 K. This estimate is reduced for colder gas temperatures and if the ejecta are clumped. We measure the reverse shock to have a radius of 114114" ±\pm 6". We also find that a decrease in the amount of mass in the unshocked ejecta (as more and more material meets the reverse shock and heats up) cannot account for the observed low frequency behaviour of the secular decline rate. To reconcile our low frequency absorption measurements with models that predict little mass in the unshocked ejecta we need the ejecta to be very clumped, or the temperature in the cold gas to be low (10\sim10 K). Both conditions can jointly contribute to the high absorption.Comment: Accepted for publication in A&A v2: including the DOI, language edit
    corecore