73 research outputs found

    Chemical characterization and in vitro toxicity on human bronchial epithelial cells BEAS-2B of PM2.5_{2.5} from an urban site under industrial emission influence

    Get PDF
    Particulate Matter (PM) is one of the most relevant environment-related health issues all over the world. In 2013, the International Agency for Research on Cancer (IARC) has classified air pollution and PM as a carcinogen for humans [1]. However, the mechanisms involved in the toxicity of these particles remains poorly understood, mainly because PM are uniquely complex owing to their physicochemical characteristics. In this study, fine particles were collected in the city center of Dunkirk, northern France using a 5 stages high volume cascade impactor (Staplex® 235, 68m3/h) and a Digitel DA80 high volume sampler (30m3/h).Samples were extensively characterized for their physico-chemical properties, including trace metals, water-soluble ions and organic species. Normal human bronchial epithelial cells (BEAS-2B) were used as cell model for toxicological analysis. Cytotoxicity, PAHs-metabolizing enzymes gene expression and genotoxic alterations were evaluated after 24, 48 or 72 h of exposure considering increasing concentrations of PM2.50.3_{2.5-0.3}, organic extracts (OE) and water-soluble fraction (WF) of PM2.50.3_{2.5-0.3} and PM2.5_{2.5}. Several sources such as road traffic, industrial activities mainly related to steelmaking, marine emissions including sea-salts and shipping, as well as soil resuspension were found to contribute to the PM2.5_{2.5} composition. Cytotoxicity assessment results showed time and dose dependent responses, with effects mainly related to PAH compounds in PM2.5_{2.5} OE in which their content were 12 times higher than in PM2.50.3_{2.5-0.3} one [2]. Differences in the induction of CYP1A1, CYP1B1 and NQO1 genes expression involved in the metabolic activation of organic compounds, as well as genotoxic effects (oxidative DNA adducts, H2A.X phosphorylation) were also evidenced after cells exposure to OE and PM2.50.3_{2.5-0.3} [3]. These results confirm the major effect of organic compounds on toxic effects, but also the potential contribution of the inorganic fraction of the PM which maintains longer the effects in exposed cells

    Toxicity of fine and quasi-ultrafine particles: focus on the effects of extractable and non-extractable matter fractions

    Get PDF
    Air pollution represents today one of the major risk factors for human health. An important part of this threat is due to the presence in the atmosphere of fine particulate matter (PM2.5_{2.5}). PM2.5_{2.5} forms a heterogeneous mixture of inorganic pollutants (metals, ions…), organic pollutants (volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAHs), dioxins, polychlorobiphenyls (PCBs)…), and biological contaminants (pollen, bacteria, fungi…). To date many studies have demonstrated the toxicity of PAHs and some metals, but so far, no study has been able to clearly attribute the toxicological effects observed to a class of pollutants. Therefore, this study aims to determine the physicochemical characteristics of PM2.50.3_{2.5-0.3} and PM0,3_{0,3} and to compare the toxicity of native PM2.50.3_{2.5-0.3}, organic fractions of fine (EOM2.50.3_{2.5-0.3}) and quasi ultrafine particles (OEM0.3_{0.3}), and PM2.50.3_{2.5-0.3} freed from this organic fraction (dPM2.50.3_{2.5-0.3}) on BEAS-2B cells in culture. Fine and quasi-ultrafine particles were sampled in the southern suburb of Beirut, Lebanon. Chemical characterization showed that quasi-ultrafine particles were about 40 times more concentrated in PAHs than fines one suggesting a significant influence of anthropogenic activities and combustion sources (industries, road traffic and electric generators) on the emission of quasi-ultrafine particles. The influence of combustion sources was confirmed by investigation of PAHs diagnostic ratios. In addition, BEAS-2B cells exposed to PM2.50.3_{2.5-0.3}, dPM2.50.3_{2.5-0.3}, EOM2.50.3_{2.5-0.3} and EOM0.3_{0.3} lead to different results concerning metabolic activation of PAHs pathway and proteins expression of biomarkers implicated in the pathway of genotoxicity. Globally, EOM0.3_{0.3} was the most inducer for phase I and phase II enzymes implicated in the metabolic activation of PAHs (AhR, AhRR, ARNT, Cyp1A1, Cyp1B1, EPHX-1, GSTA-4) and EOM0.3_{0.3} induced DNA damage, felt by ATR and followed by a cascade of protein phosphorylations contributing to the cell cycle arrest (P21 and P53 induction)

    The majority of autosomal recessive nanophthalmos and posterior microphthalmia can be attributed to biallelic sequence and structural variants in MFRP and PRSS56

    Get PDF
    This study aimed to genetically and clinically characterize a unique cohort of 25 individuals from 21 unrelated families with autosomal recessive nanophthalmos (NNO) and posterior microphthalmia (MCOP) from diferent ethnicities. An ophthalmological assessment in all families was followed by targeted MFRP and PRSS56 testing in 20 families and whole-genome sequencing in one family. Three families underwent homozygosity mapping using SNP arrays. Eight distinct MFRP mutations were found in 10/21 families (47.6%), fve of which are novel including a deletion spanning the 5′ untranslated region and the frst coding part of exon 1. Most cases harbored homozygous mutations (8/10), while a compound heterozygous and a monoallelic genotype were identifed in the remaining ones (2/10). Six distinct PRSS56 mutations were found in 9/21 (42.9%) families, three of which are novel. Similarly, homozygous mutations were found in all but one, leaving 2/21 families (9.5%) without a molecular diagnosis. Clinically, all patients had reduced visual acuity, hyperopia, short axial length and crowded optic discs. Retinitis pigmentosa was observed in 5/10 (50%) of the MFRP group, papillomacular folds in 12/19 (63.2%) of MCOP and in 3/6 (50%) of NNO cases. A considerable phenotypic variability was observed, with no clear genotype-phenotype correlations. Overall, our study represents the largest NNO and MCOP cohort reported to date and provides a genetic diagnosis in 19/21 families (90.5%), including the frst MFRP genomic rearrangement, ofering opportunities for gene-based therapies in MFRP-associated disease. Finally, our study underscores the importance of sequence and copy number analysis of the MFRP and PRSS56 genes in MCOP and NNO

    Global Policy Barriers and Enablers to Exercise and Physical Activity in Kidney Care

    Get PDF
    Objective: Impairment in physical function and physical performance leads to decreased independence and health-related quality of life in people living with chronic kidney disease and end-stage kidney disease. Physical activity and exercise in kidney care are not priorities in policy development. We aimed to identify global policy-related enablers, barriers, and strategies to increase exercise participation and physical activity behavior for people living with kidney disease. Design and Methods: Guided by the Behavior Change Wheel theoretical framework, 50 global renal exercise experts developed policy barriers and enablers to exercise program implementation and physical activity promotion in kidney care. The consensus process consisted of developing themes from renal experts from North America, South America, Continental Europe, United Kingdom, Asia, and Oceania. Strategies to address enablers and barriers were identified by the group, and consensus was achieved. Results: We found that policies addressing funding, service provision, legislation, regulations, guidelines, the environment, communication, and marketing are required to support people with kidney disease to be physically active, participate in exercise, and improve health-related quality of life. We provide a global perspective and highlight Japanese, Canadian, and other regional examples where policies have been developed to increase renal physical activity and rehabilitation. We present recommendations targeting multiple stakeholders including nephrologists, nurses, allied health clinicians, organizations providing renal care and education, and renal program funders. Conclusions: We strongly recommend the nephrology community and people living with kidney disease take action to change policy now, rather than idly waiting for indisputable clinical trial evidence that increasing physical activity, strength, fitness, and function improves the lives of people living with kidney disease

    The therapeutic potential of epigenetic manipulation during infectious diseases.

    Get PDF
    Epigenetic modifications are increasingly recognized as playing an important role in the pathogenesis of infectious diseases. They represent a critical mechanism regulating transcriptional profiles in the immune system that contributes to the cell-type and stimulus specificity of the transcriptional response. Recent data highlight how epigenetic changes impact macrophage functional responses and polarization, influencing the innate immune system through macrophage tolerance and training. In this review we will explore how post-translational modifications of histone tails influence immune function to specific infectious diseases. We will describe how these may influence outcome, highlighting examples derived from responses to acute bacterial pathogens, models of sepsis, maintenance of viral latency and HIV infection. We will discuss how emerging classes of pharmacological agents, developed for use in oncology and other settings, have been applied to models of infectious diseases and their potential to modulate key aspects of the immune response to bacterial infection and HIV therapy

    Histone Deacetylases Control Neurogenesis in Embryonic Brain by Inhibition of BMP2/4 Signaling

    Get PDF
    Background Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs) lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain. Principal Findings As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited. Conclusions Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical neurogenesis. The results also suggest that HDACs may regulate the developmental switch from neurogenesis to astrogliogenesis that occurs in late gestation

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock
    corecore