

Yann LANDKOCZ, Sylvain BILLET, Frédéric LEDOUX, Anthony VERDIN, Perrine MARTIN, Fabrice CAZIER, <u>Dominique COURCOT</u>

Université du Littoral Côte d'Opale Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV, EA 4492 SFR Condorcet, FR CNRS 3417 F-59140, Dunkerque, France

Contact: Dominique.Courcot@univ-littoral.fr

http://uceiveng.univ-littoral.fr/ 1

Small size PM is attracting a particular attention: the smaller the particle size,

- the higher time it remains suspended in air the higher probability of it being inhaled
- the higher ability to reach the deep lung

Epidemiological studies

- \nearrow 10 $\mu g/m^3$ of $\,PM_{2.5}$ concentration:
 - 26 % mortality risk by cardio-vascular disease (Lepeule et al., 2012)
 - 7 8 % incidence rate of lung cancer (ERS, 2010)
 - Respiratory insufficiencies : asthma, chronic obstructive pulmonary diseases (COPD) (Silverman et Ito, 2009 ; Tsai et al., 2013)

PM_{2.5} and related health effects in the North of France

- Exposure to PM: 6 millions people in the Region
- Impact of PM on Life expectancy : average loss of 16 months (InVS, 2015)
- High road traffic density
- Local industrial emissions of particles in the atmosphere (>3000 tons/y) (European-PRTR data)

Gain in life expectancy in a scenario "without air pollution"

Objectives of the study

- Determine metals and PAHs concentrations in PM_{2.5} and identify their sources in Dunkerque, a coastal urban site
- Compare toxic effects of PM_{2.5} from *in vitro* experiments on epithelial lung cells, depending on their exposure to solid particles, water soluble or organic extracts

Experimental approach

Unité de Chimie Environner et Interactions sur le Vivant

Methods

Principle of impaction

5

PM_{2.5} monitoring and sampling

- Location: Dunkerque, 200 000 inhabitants
- Period : March to July, 2011
- Devices : MP101 RST, Environnement SA[®] for PM_{2.5} concentration
 - Sampler Digitel[®] DA 80 (30 m³/h): 24h PM_{2.5} samples (on filter)
 - Cascade impactor STAPLEX[®] (68 m³/h): 5 days PM_{2.5-0.3} samples (on plate)

PM_{2.5} chemical characterization

Major and trace elements (ICP-AES and ICP-MS), water soluble ions (IC)

Total carbon (CHON analyzer) and Polycyclic Aromatic Hydrocarbons PAHs (GC-MS)

Average PM_{2.5} concentration (march-july 2011) : 14 µg/m³

- NO_3^- , SO_4^{2-} , NH_4^+ and carbon :
 - > 90% of PM_{2.5} mass

- Metals explained mainly by emissions from steelmaking industry, traffic non-exhaust and heavy fuel oil combustion
 - PAHs ratios (Fla/Pyr, InPy/BghiP) convenient with diesel exhaust, heavy fuel oil combustion and cokemaking industry emissions

Water soluble fraction (WF) : particles placed in pure water

- Proportion of elements in PM_{2.5-0.3} / PM_{2.5}:
 Ba, Ti : > 75%
 - Al, Fe, Mn : between 75 and 25 %
 - Cr, Cu, Ni, Pb, V, Zn: < 25%

 Water soluble ions(Ca²⁺, K⁺) and sea salts (Na⁺, Mg²⁺, Cl⁻) predominantly found in the PM_{2.5-0.3}, contrary to secondary inorganic ions

Organic extracts (OE): Soxhlet extraction using DCM Organic compounds concentrated in DMSO

	PM _{2.5-0.3}		PM _{2.5}	
	(µg/g)	(pg/m^3)	(µg/g)	(pg/m^3)
Phenanthrene (Phe)	2.4	33	13.2	186
Anthracene (Ant)	1.5	21	_	_
Fluoranthene (Fla)	2.5	35	26.9	378
Pyrene (Pyr)	2.2	31	23.9	336
Benz[a]anthracene (BaA)	3.2	46	21.3	330
Chrysene (Chr)	5.0	71	62.7	882
Benzo[b]fluoranthene (BbF)	9.5	134	189	2,670
Benzo[k]fluoranthene (BkF)	5.3	74	64.2	904
Benzo[a]pyrene (BaP)	3.2	44	24.4	343
Indeno[1,2,3-c,d]pyrene (InPy)	5.3	74	52.8	743
Dibenz[a,h]anthracene (DahA)	2.0	28	13.4	189
Benzo[ghi]perylene (BghiP)	5.2	73	55.2	777
Total PAHs	48.5	669	548	7,708

Landkocz et al. Env. Poll. 2017

- PAHs more concentrated in PM_{2.5} including the ultrafine fraction than in PM_{2.5-0.3}
 - Phe, BaA, BaP, DahA : 5-10 fold higher
 - Other compounds > 10- fold higher

 Contribution of combustion processes, known to form hydrocarbon- rich particles predominantly in the ultrafine mode (Kawanaka et al. 2009)

Cell viability

from Extracellular LDH release measurements

- PM_{2.5-0.3}, OE and WF samples : decrease of cell viability in a time- and dose-dependent manner
- Organic extracts (OE): more cytotoxic than PM_{2.5-0.3} and the two WF extracts
- Cytotoxicity : OE $PM_{2.5}$ > OE $PM_{2.5-0.3}$
- ⇒ PAHs concentration : much higher in PM_{2.5} than PM_{2.5-0.3}
- Cytotoxicity mainly governed by organic compounds, and particularly PAHs (Oh et al. 2011, Topinka et al. 2013)
- Tests using 2 doses : 3 and 15 µg/cm²

Gene expression of xenobiotic-metabolizing enzymes

 CYP 1A1, CYP 1B1 and NQO-1 gene expression : induced in a dose-dependent manner (6h)

• CYP 1A1 gene expression :

decrease over time, however, significant expression after 48h for $PM_{2.5-0.3}$ (15 µg/cm²) contrary to OEs

Interpretation :

- ⇒ 1/ higher bioavailability of PAHs in OEs
 - 2/ in PM_{2.5-0.3}, PAHs strongly bounded on particle surface and inside pores
 - 3) in PM_{2.5-0.3}, a gene induction by metals can not be excluded (Korashy et al. 2005)

6 replicates / * Significant (Relative Quantity, RQ<0.5 or RQ>2)

Genotoxicity

⇒

6 replicates / * p<0.05 between control and exposed (Mann Whitney U test)

- DNA oxidative alteration: Dose-dependent increase of 8-hydroxydesoxyguanosine 8-OHdG level (Billet et al. 2018; Dergham et al. 2015)
- Similar level : $PM_{2.5-0.3} \approx OE PM_{2.5-0.3}$, and $OE PM_{2.5} > OE PM_{2.5-0.3}$
- ⇒ oxidative DNA alteration mainly linked to the organic fraction (Høgsberg et al. 2013)
- DNA Damage Response (repair mechanism of double strands breaks) (Foster et al. 2005)
- H2A.X : significant increase of phosphorylation for PM_{2.5-0.3} (15 µg/cm²) and OEs :
 - organic compounds at high dose could limit the ability of cells to induce repair mechanism
 - 2/ metals in PM_{2.5-0.3} known to cause double strands breaks but also to inhibit proteins involved in the DNA repair pathway

(Morales et al. 2016)

- Comparison of biological response of Beas 2B cells depending on the use of starting particles (as collected on plates) or water soluble and organic extracts
- Cytotoxicity and oxidative DNA alteration (8-OHdG) mainly governed by the organic fraction
- Considering Organic Extracts for *in vitro* toxicology tests does not reflect exactly the cell response (XME, DDR) in the presence of particles : role of the particle skeleton
- Further investigation on the signalisation pathways involving oxidative stress presented in the next talk....

This study has been supported by:

- the Hauts-de-France Region Council
- the French Ministry of Higher Education and Research (CPER Climibio)
- the « Institut National du Cancer », France
- the European Union (EFRED)

Metal Concentration Roses Cd

Mn

Ν

S

Ag

Ν 0.12

0,08

104

0

S

Sb

0

S

 \triangleleft

S

Pb

Ν

10

0

S

Ва

Ν

S

 \leq

 $\[\]$

10)

Fe

S

Rb

Ν

0,75

0,5

0,25

0

S

Cu

Ν

S

w

200 100

ng/m³

S

wind sector	elements
WNW	Fe, Mn, Cd, Rb, Ag, Pb, Zn
ENE	Zn, Cr, Cu
SE-SW	Cu, Sb, Ba, Pb
SW- NE	Ni, V

 \square

assignment

- **Integrated steelworks** ⇒
- **Electric Steel plant**
- ⇒ Trafic
- Heavy fuel oil combustion ⇒

PM_{2.5} toxic effects study

 Experiments using epithelial human bronchial cells (BEAS 2B) in culture : « in vitro » study

Test considering PM_{2.5-0.3} and extracts :

Cytotoxicity, gene expression of XME, genotoxicity (8-OHdG, H2A.X)

	Preparation	PM _{2.5}	PM _{2.5-0.3}
Particles		DA80 filter	PM _{2.5-0.3} recovered on impaction plates
Organic Extract	Soxhlet extraction using DCM. Organic compounds concentrated in DMSO	OE PM _{2.5}	OE PM _{2.5-0.3}
Water soluble fraction	Solubilization in pure water	WF PM _{2.5}	WF PM _{2.5-0.3}

• Exposure time: 6, 24, 48 and 72 h