246 research outputs found

    Dislocation Core Energies and Core Fields from First Principles

    Get PDF
    Ab initio calculations in bcc iron show that a screw dislocation induces a short-range dilatation field in addition to the Volterra elastic field. This core field is modeled in anisotropic elastic theory using force dipoles. The elastic modeling thus better reproduces the atom displacements observed in ab initio calculations. Including this core field in the computation of the elastic energy allows deriving a core energy which converges faster with the cell size, thus leading to a result which does not depend on the geometry of the dislocation array used for the simulation.Comment: DOI: 10.1103/PhysRevLett.102.05550

    Calculation of the substitutional fraction of ion-implanted He in an Fe target

    Full text link
    Ion-implantation is a useful technique to study irradiation damage in nuclear materials. To study He effects in nuclear fusion conditions, He is co-implanted with damage ions to reproduce the correct He/dpa ratios in the desired or available depth range. However, the short-term fate of these He ions, i.e over the time scales of their own collisional phase, has not been yet unequivocally established. Here we present an atomistic study of the short-term evolution of He implantation in an Fe substrate to approximate the conditions encountered in dual ion-implantation studies in ferritic materials. Specifically, we calculate the fraction of He atoms that end up in substitutional sites shortly after implantation, i.e. before they contribute to long-term miscrostructural evolution. We find that fractions of at most 3% should be expected for most implantation studies. In addition, we carry out an exhaustive calculation of interstitial He migration energy barriers in the vicinity of matrix vacancies and find that they vary from approximately 20 to 60 meV depending on the separation and orientation of the He-vacancy pair.Comment: 7 pages, 6 figures, 2 table

    Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W

    Get PDF
    Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. As well, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials

    Dislocation core field. II. Screw dislocation in iron

    Get PDF
    The dislocation core field, which comes in addition to the Volterra elastic field, is studied for the screw dislocation in alpha-iron. This core field, evidenced and characterized using ab initio calculations, corresponds to a biaxial dilatation, which we modeled within the anisotropic linear elasticity. We show that this core field needs to be considered when extracting quantitative information from atomistic simulations, such as dislocation core energies. Finally, we look at how dislocation properties are modified by this core field, by studying the interaction between two dislocations composing a dipole, as well as the interaction of a screw dislocation with a carbon atom

    Dislocation motion and instability

    Get PDF
    The Peach-Koehler expression for the stress generated by a single (non-planar) curvilinear dislocation is evaluated to calculate the dislocation self stress. This is combined with a law of motion to give the self-induced motion of a general dislocation curve. A stability analysis of a rectilinear, uniformly translating dislocation is then performed. The dislocation is found to be susceptible to a helical instability, with the maximum growth rate occurring when the dislocation is almost, but not exactly, pure screw. The non-linear evolution of the instability is determined numerically, and implications for slip band formation and non-Schmid behaviour in yielding discussed

    Rice Yellow Mottle Virus stress responsive genes from susceptible and tolerant rice genotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of viral infection involve concomitant plant gene variations and cellular changes. A simple system is required to assess the complexity of host responses to viral infection. The genome of the Rice yellow mottle virus (RYMV) is a single-stranded RNA with a simple organisation. It is the most well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now available and provide strong support for genomic studies, particularly physical mapping and gene identification.</p> <p>Results</p> <p>The present data, obtained through the cDNA-AFLP technique, demonstrate differential responses to RYMV of two different rice cultivars, i.e. susceptible IR64 (<it>Oryza sativa indica</it>), and partially resistant Azucena (<it>O. s. japonica</it>). This RNA profiling provides a new original dataset that will enable us to gain greater insight into the RYMV/rice interaction and the specificity of the host response. Using the SIM4 subroutine, we took the intron/exon structure of the gene into account and mapped 281 RYMV stress responsive (RSR) transcripts on 12 rice chromosomes corresponding to 234 RSR genes. We also mapped previously identified deregulated proteins and genes involved in partial resistance and thus constructed the first global physical map of the RYMV/rice interaction. RSR transcripts on rice chromosomes 4 and 10 were found to be not randomly distributed. Seven genes were identified in the susceptible and partially resistant cultivars, and transcripts were colocalized for these seven genes in both cultivars. During virus infection, many concomitant plant gene expression changes may be associated with host changes caused by the infection process, general stress or defence responses. We noted that some genes (e.g. ABC transporters) were regulated throughout the kinetics of infection and differentiated susceptible and partially resistant hosts.</p> <p>Conclusion</p> <p>We enhanced the first RYMV/rice interaction map by combining information from the present study and previous studies on proteins and ESTs regulated during RYMV infection, thus providing a more comprehensive view on genes related to plant responses. This combined map provides a new tool for exploring molecular mechanisms underlying the RYMV/rice interaction.</p

    Effect of chromophore-chromophore electrostatic interactions in the NLO response of functionalized organic-inorganic sol-gel materials

    Full text link
    In the last years, important non-linear optical results on sol-gel and polymeric materials have been reported, with values comparable to those found in crystals. These new materials contain push-pull chromophores either incorporated as guest in a high Tg polymeric matrix (doped polymers) or grafted onto the polymeric matrix. These systems present several advantages; however they require significant improvement at the molecular level - by designing optimized chromophores with very large molecular figure of merit, specific to each application targeted. Besides, it was recently stated in polymers that the chromophore-chromophore electrostatic interactions, which are dependent of chromophore concentration, have a strong effect into their non-linear optical properties. This has not been explored at all in sol-gel systems. In this work, the sol-gel route was used to prepare hybrid organic-inorganic thin films with different NLO chromophores grafted into the skeleton matrix. Combining a molecular engineering strategy for getting a larger molecular figure of merit and by controlling the intermolecular dipole-dipole interactions through both: the tuning of the push-pull chromophore concentration and the control of TEOS (Tetraethoxysilane) concentration, we have obtained a r33 coefficient around 15 pm/V at 633 nm for the classical DR1 azo-chromophore and a r33 around 50 pm/V at 831 nm for a new optimized chromophore structure.Comment: 10 pages, 11 figures, 1 tabl

    Dislocation interaction with C in alpha-Fe: a comparison between atomic simulations and elasticity theory

    Get PDF
    The interaction of C atoms with a screw and an edge dislocation is modelled at an atomic scale using an empirical Fe-C interatomic potential based on the Embedded Atom Method (EAM) and molecular statics simulations. Results of atomic simulations are compared with predictions of elasticity theory. It is shown that a quantitative agreement can be obtained between both modelling techniques as long as anisotropic elastic calculations are performed and both the dilatation and the tetragonal distortion induced by the C interstitial are considered. Using isotropic elasticity allows to predict the main trends of the interaction and considering only the interstitial dilatation will lead to a wrong interaction

    Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations

    Full text link
    We use a physically-based crystal plasticity model to predict the yield strength of body-centered cubic (bcc) tungsten single crystals subjected to uniaxial loading. Our model captures the thermally-activated character of screw dislocation motion and full non-Schmid effects, both of which are known to play a critical role in bcc plasticity. The model uses atomistic calculations as the sole source of constitutive information, with no parameter fitting of any kind to experimental data. Our results are in excellent agreement with experimental measurements of the yield stress as a function of temperature for a number of loading orientations. The validated methodology is then employed to calculate the temperature and strain-rate dependence of the yield strength for 231 crystallographic orientations within the standard stereographic triangle. We extract the strain-rate sensitivity of W crystals at different temperatures, and finish with the calculation of yield surfaces under biaxial loading conditions that can be used to define effective yield criteria for engineering design models

    Efficient and transferable machine learning potentials for the simulation of crystal defects in bcc Fe and W

    Get PDF
    Data-driven, or machine learning (ML), approaches have become viable alternatives to semiempirical methods to construct interatomic potentials, due to their capacity to accurately interpolate and extrapolate from first-principles simulations if the training database and descriptor representation of atomic structures are carefully chosen. Here, we present highly accurate interatomic potentials suitable for the study of dislocations, point defects, and their clusters in bcc iron and tungsten, constructed using a linear or quadratic input-output mapping from descriptor space. The proposed quadratic formulation, called quadratic noise ML, differs from previous approaches, being strongly preconditioned by the linear solution. The developed potentials are compared to a wide range of existing ML and semiempirical potentials, and are shown to have sufficient accuracy to distinguish changes in the exchange-correlation functional or pseudopotential in the underlying reference data, while retaining excellent transferability. The flexibility of the underlying approach is able to target properties almost unattainable by traditional methods, such as the negative divacancy binding energy in W or the shape and the magnitude of the Peierls barrier of the 1 2 ⟨ 111 ⟩ screw dislocation in both metals. We also show how the developed potentials can be used to target important observables that require large time-and-space scales unattainable with first-principles methods, though we emphasize the importance of thoughtful database design and degrees of nonlinearity of the descriptor space to achieve the appropriate passage of information to large-scale calculations. As a demonstration, we perform direct atomistic calculations of the relative stability of 1 2 ⟨ 111 ⟩ dislocations loops and three-dimensional C15 clusters in Fe and find the crossover between the formation energies of the two classes of interstitial defects occurs at around 40 self-interstitial atoms. We also compute the kink-pair formation energy of the 1 2 ⟨ 111 ⟩ screw dislocation in Fe and W, finding good agreement with density functional theory informed line tension models that indirectly measure those quantities. Finally, we exploit the excellent finite-temperature properties to compute vacancy formation free energies with full anharmonicity in thermal vibrations. The presented potentials thus open up many avenues for systematic investigation of free-energy landscape of defects with ab initio accuracy
    corecore