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Ab initio calculations in bcc iron show that a 〈111〉 screw dislocation induces a short range
dilatation field in addition to the Volterra elastic field. This core field is modeled in anisotropic elastic
theory using force dipoles. The elastic modeling thus better reproduces the atom displacements
observed in ab initio calculations. Including this core field in the computation of the elastic energy
allows deriving a core energy which converges faster with the cell size, thus leading to a result which
does not depend on the geometry of the dislocation array used for the simulation.

PACS numbers: 61.72.Lk, 61.72.Bb

Plastic deformation in crystals is heavily related to the
dislocation core properties [1]. As experimental investi-
gation of the dislocation core is difficult, atomic simula-
tions have become a common tool in dislocation theory.
But dislocations induce a long-range elastic field and one
has to take full account of it in the atomic modeling. This
is even more crucial for ab initio calculations because of
the small size of the unit cell that can be simulated. In
this Letter, we illustrate this point for the screw disloca-
tion in bcc Fe by showing that the commonly-used elastic
description, i.e. the Volterra solution [1], has to be en-
riched in order to get quantitative information from ab
initio calculations.

Two different methods based on ab initio calculations
have been developed to model dislocations. In the first
approach, a single dislocation is introduced in a unit
cell which is periodic only along the dislocation line and
with surfaces in the other directions. Surface atoms are
displaced according to the dislocation long-range elastic
field and can be either kept fixed or relaxed using lattice
Green functions [2]. The main drawback of this method
is that, in ab initio calculations, one cannot separate the
energy contribution of the dislocation from the surface
one. To calculate dislocation energy properties, one has
to use the second approach which is based on full peri-
odic boundary conditions [3, 4, 5, 6]. As this is possible
only if the total Burgers vector of the unit cell is zero, a
dislocation dipole is simulated. Using elasticity theory,
one can calculate the interaction between the two dislo-
cations forming the dipole as well as with their periodic
images [6], and thus isolate dislocation intrinsic proper-
ties.

We use this dipole approach to study the core proper-
ties of 〈111〉 screw dislocations in bcc iron with ab initio
calculations based on density functional theory using the
SIESTA code as described in Ref. 7. The dislocations are
positioned at the center of gravity of three neighboring
atomic columns. Depending on the sign of the Burg-
ers vector compared to the helicity of the original site,
there are two different configurations, termed “easy” and

FIG. 1: Screw dislocation periodic arrangements used for ab
initio calculations: (a) T and (b) AT triangular arrangements;

(c) quadrupolar arrangement. ~b = 1

2
[111] for “easy” and

1

2
[1̄1̄1̄] for “hard” cores. ~A is the dipole cut vector.

“hard”. The “hard” core configuration shifts locally the
atoms such that they lie in the same {111} plane. From
steric considerations, one thus expects this configuration
to be less stable. The energy landscape experienced by
the gliding dislocation is dictated by the energy difference
between these two configurations which is a maximum
for the Peierls barrier. It is therefore important to get a
precise knowledge of the corresponding core energies.

We introduce the dipole in periodic unit cells corre-
sponding to different dislocation arrays [7]. The triangu-
lar arrangements of Figs. 1a and 1b preserve the 3-fold
symmetry of the bcc lattice in the [111] direction. One
can obtain two variants which are related by a π/3 rota-
tion. We refer to them as the twinning (T) (Fig. 1a) and
the anti-twinning (AT) triangular arrangement (Fig. 1b)
[8]. The last dislocation arrangement (Fig. 1c) is equiv-
alent to a rectangular array of quadrupoles.

Simulation unit cells are built so that the two dislo-
cations composing the dipole are in the same configura-
tion, either “easy” or “hard” depending on the sign of
the Burgers vector. Assuming that the elastic displace-
ment field created by each dislocation corresponds to the
Volterra one [1], the elastic energy stored in the simula-
tion box is proportional to the square of the Burgers vec-
tor and therefore is the same for the “easy” and “hard”
configurations. The core energy difference between the
two possible configurations is thus simply given by half
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FIG. 2: Core energy difference between the “easy” and “hard”
core configurations. Solid symbols correspond to core energies
obtained when only the Volterra field is considered and open
symbols to core energies when both the Volterra and the core
fields are taken into account (rc = 3 Å).

the energy difference obtained from ab initio calculations
for the same unit cell. This energy difference is shown as
solid symbols in Fig. 2. The result depends on the chosen
dislocation arrangement. According to the T triangular
arrangement, the “hard” core configuration is more sta-
ble than the “easy” one, whereas the quadrupolar and the
AT triangular arrangements lead to the opposite conclu-
sion. For a given arrangement, the convergence with the
number N of atoms is proportional to N−1/2. The com-
putational cost to directly deduce converged values from
ab initio calculations is therefore out of reach.

To understand how our simulation approach has to be
enriched to lead to unambiguous dislocation core ener-
gies, we examine the atom displacements created by the
dislocation array in ab initio calculations. For all unit
cells, atom displacements in the [111] direction, i.e. the
screw component, correspond to dislocations having a
symmetrical and compact core structure, in agreement
with recent ab initio calculations in bcc Fe [4, 7, 9].
The screw dislocation dipoles also create displacements
in the (111) plane, i.e. perpendicular to the screw axis
(Fig. 3a). Part of this edge component arises from elastic
anisotropy. Nevertheless, when subtracting the displace-
ments predicted by anisotropic elasticity for the periodic
dislocation array [6] from the ones given by ab initio cal-
culations, one obtains a residual displacement (Fig. 3b)
which looks like a combination of 2-dimension expansions
centered at the dislocations.

This is not included in the Volterra solution describing
the dislocation elastic field. Nevertheless, going back to
the seminal paper of Eshelby et al. [10], it appears that a
dislocation can also lead to such a supplementary elastic
field. Indeed, Eshelby et al. showed that a straight dis-
location in an infinite elastic medium creates in a point

defined by its cylindrical coordinates r and θ a displace-
ment given by a Laurent series which leading terms are

~u(r, θ) = ~v ln(r) + ~u0(θ) + ~u1(θ)
1

r
+ O

(

1

r2

)

. (1)

Usually, only the two first terms of this series are con-
sidered leading to the well-known Volterra solution [11].
This gives the long-range displacement induced by the
discontinuity along the dislocation cut.

Close to the dislocation core, the third term in Eq. 1
may be relevant too [12, 13]. This corresponds to what
is usually called the dislocation core field. Such a field
arises from non-linearities in the crystal elastic behavior
and from perturbations due to the atomic nature of the
core. It can be modeled within anisotropic linear elas-
ticity theory using line-force dipoles representative of an
elliptical line source expansion located close to the dislo-
cation core [14]. The core field is then characterized by
the first moments Mij of this line-force distribution. We
propose in the following an original approach that allows
to directly deduce the moments Mij from quantities that
can be “measured” in atomic simulations.

In that purpose, we consider the elastic energy of a
periodic unit cell containing a dislocation dipole defined
by its Burgers vector ~b and its cut vector ~A. Each dis-
location also creates a core field corresponding to the
moments given by the second-rank tensor M . An homo-
geneous strain can be superposed to the heterogeneous
strain created by the dislocation dipole. This contributes
to the elastic energy by an amount [15]

Eε = h

(

1

2
SCijklεijεkl + CijklbiAjεkl − 2Mijεij

)

, (2)

where S is the area of the simulation unit cell perpendic-
ular to the dislocation lines, h the corresponding height
and Cijkl the elastic constants. The homogeneous stress
is defined as

σij =
1

hS

∂Eε

∂εij
= Cijkl(εkl − ε0

kl), (3)

with the stress-free strain

ε0
ij = −

biAj + bjAi

2S
+ 2Sijkl

Mkl

S
, (4)

where the elastic compliances Sijkl are the inverse of the
elastic constants.

When the dislocations do not create any core field
(M = 0), one recovers the fact that the elastic energy is
minimal for an homogeneous strain equal to the plastic
strain produced when the dislocation dipole is introduced
in the simulation unit cell [6]. The core fields induce a
second contribution which is proportional to the disloca-
tion density, thus allowing to define a dislocation forma-
tion volume. Our ab initio calculations lead for a screw
dislocation in bcc iron to a dilatation perpendicular to
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FIG. 3: Planar displacement map of a periodic unit cell containing a screw dislocation dipole obtained from ab initio calculations:
(a) total displacement, (b) after subtraction of the Volterra elastic field, and (c) after subtraction of the Volterra and the core
elastic fields. Vectors correspond to (111) in-plane displacements and have been magnified by a factor 50. Displacements
smaller than 0.01 Å are omitted. For clarity, displacements of the six atoms belonging to the cores of the two dislocations are
not shown in (c). Atomic positions are drawn as circles with a color depending of their original (111) plane.

the dislocation line, δV⊥ = (ε0
11 +ε0

22)S/2 = 3.8±0.3 Å2,
and to a contraction along the dislocation line, δV// =

ε0
33S/2 = −1.3 ± 0.2 Å2, where the formation volumes

are defined per unit of dislocation line.

Instead of letting the unit cell relax its size and shape,
one can also keep fixed the periodicity vectors and mini-
mize the energy only with respect to the atomic positions.
The simulation box is thus subject to an homogeneous
stress from which the moments responsible for the dislo-
cation core field can be deduced using Eqs. 3 and 4. The
component σ33 of the “measured” homogeneous stress is
negligible compared to σ11 and σ22, in agreement with
the following argument.

For a [111] screw dislocation in a cubic crystal, be-
cause of the 3-fold symmetry, the tensor M is diagonal
with M11 = M22 and M33 = 0 if the unit vector ~e3 cor-
responds to the [111] direction. The core field is thus
a pure dilatation in the (111) plane. This is true when
the dislocation is in a stress-free state or if the stress ex-
perienced by the dislocation also obeys this 3-fold sym-
metry. The ab initio calculations indeed lead to such
a tensor M for the two triangular arrangements. The
quadrupolar arrangement induces a stress which does not
obey this symmetry. Because of the moment polariz-
ability [16], we obtain different values for M11 and M22

in this case. Nevertheless, all dislocation arrangements
used in ab initio calculations converge with the cell size
to M11 = M22 = 650 ± 50 GPa.Å2 for both “easy” and
“hard” core configurations. As for the contraction ob-
served along the dislocation line, it arises from the elastic
compliance S1133 which couples the strain component ε33

with the force moments M11 and M22.

Knowing the moments, we model the dislocation elas-
tic displacement as the superposition of the Volterra and
the core fields. We can thus compare the displacement
given by ab initio calculations with the one predicted

by elasticity theory for the dislocation periodic array [6].
Looking at the difference between the fields given by the
two modeling techniques for the in-plane (111) compo-
nent (Fig. 3c), one sees that elasticity theory perfectly
manages to reproduce the displacement given by ab ini-
tio calculations, except for atoms which are too close to
the dislocation cores. It is clear that the superposition
of the core field to the Volterra solution greatly improves
the description of the dislocation elastic field.

The excess energy E, i.e. the energy difference per unit
of height between the unit cell with and without the dis-
location dipole, is the sum of the two dislocation core
energies Ecore and of the elastic energy.

E = 2Ecore +E0−biK
0
ijbj ln (rc)+MijK

2
ijklMkl

1

rc
2

(5)

where K0 and K2 are definite positive tensors which only
depend on the elastic constants. E0 contains the elastic
interaction between the two dislocations composing the
primary dipole, as well as the interaction with their pe-
riodic images. The core fields modify this interaction
energy as the dislocations now interact not only through
their Volterra elastic fields but also through their core
fields and the combination of these two elastic fields.
The last term in Eq. 5 corresponds to the increase of
the dislocation self elastic energy due to their core fields.
The cutoff distance rc is introduced because elastic fields
are diverging due to elasticity inability to describe atom
displacements in the dislocation core. The core energy
that can be deduced from atomic simulations therefore
depends on the value of rc.

We use Eq. 5 to extract dislocation core energy from
atomic simulations: E and M are deduced from ab ini-
tio calculations, whereas E0, K0, and K2 are calculated
with anisotropic elasticity theory. A core radius slightly
larger than the Burgers vector (rc = 3 Å) leads to reason-
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FIG. 4: Sketch of the (111) in-plane displacement created by
the triangular arrangement of dislocations in their “easy” core
configuration. For the T variant (a), the displacements due
to the Volterra and the core fields have the same sign and
sum up in the region between two neighboring dislocations,
whereas they partially cancel for the AT variant (b).

able core energies and a good convergence with the size
of the simulation unit cell. The core energy difference
between the “easy” and the “hard” core configurations
of the screw dislocation in bcc iron converges now rapidly
to a value which does not depend on the geometry of the
dislocation arrangement (Fig. 2). For all simulations,
the “easy” core configuration is more stable than the
“hard” one, with a core energy converging respectively to
Ecore

easy = 219±1 meV.Å−1 and Ecore
hard = 227±1 meV.Å−1.

We can now understand why the simple approach,
where only the Volterra elastic field is considered, leads
to core energies which strongly depend on the geometry
of the dislocation array. Looking at the (111) in-plane
displacement created by each component of the disloca-
tion elastic field, the Volterra part oscillates as a function
of θ between a compression and a tension type, whereas
the core-field only leads to a compression. This is illus-
trated in Fig. 4 for the two variants of the triangular
arrangement with the dislocations in their “easy” core
configuration. It is clear on this figure, that the effects of
the Volterra and the core fields will sum up in the regions
between two neighboring dislocations for the T variant
(Fig. 4a), whereas they will partially compensate for the
AT variant (Fig. 4b). One thus expects a stronger elastic
interaction between dislocations for the T variant than
for the AT one. This is the opposite for the “hard” core
configuration, as changing the sign of the Burgers vector
reverses the Volterra elastic field without modifying the
core field. When neglecting the dislocation core field, one
thus overestimates the elastic energy difference between
the “easy” and “hard” core configurations for the T vari-
ant and underestimates it for the AT one. On the other
hand, the coupling of the Volterra and the core elastic
field leads to a negligible interaction between neighboring
dislocations for the quadrupolar arrangement because of
its centro-symmetry. This arrangement actually appears
as the best-suited one to extract quantitative information
from atomic simulations [6].

This dilatation due to the dislocation core field is not
specific to iron. When analyzing previous ab initio cal-

culations [3, 4] we can conclude that screw dislocations
exhibit a similar core field in other bcc metals like Mo
and Ta. On the other hand, empirical potentials may
fail to predict such a core dilatation. This is the case
for Mendelev potential [17] which is often used to study
dislocations in iron [9, 18, 19].

In addition to determining the formation volume of
the screw dislocation in iron and modeling it within
anisotropic linear elasticity theory, our study shows that
considering this core field is crucial when deriving from
atomic simulations dislocation parameters like their core
energy. This supplementary elastic field should also in-
fluence any energy differences, like the Peierls barriers,
and stresses extracted from atomic simulations. More-
over, because of the formation volume associated with
this core field, a dislocation can interact with an hydro-
static stress. Close to the core, it will modify the dislo-
cation interaction with point defects [19].
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