11 research outputs found

    The origin of the negative torque density in disk-satellite interaction

    Full text link
    Tidal interaction between a gaseous disk and a massive orbiting perturber is known to result in angular momentum exchange between them. Understanding astrophysical manifestations of this coupling such as gap opening by planets in protoplanetary disks or clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks requires knowledge of the spatial distribution of the torque exerted on the disk by a perturber. Recent hydrodynamical simulations by Dong et al (2011) have shown evidence for the tidal torque density produced in a uniform disk to change sign at the radial separation of ≈3.2\approx 3.2 scale heights from the perturber's orbit, in clear conflict with the previous studies. To clarify this issue we carry out a linear calculation of the disk-satellite interaction putting special emphasis on understanding the behavior of the perturbed fluid variables in physical space. Using analytical as well as numerical methods we confirm the reality of the negative torque density phenomenon and trace its origin to the overlap of Lindblad resonances in the vicinity of the perturber's orbit - an effect not accounted for in previous studies. These results suggest that calculations of the gap and cavity opening in disks by planets and binary SMBHs should rely on more realistic torque density prescriptions than the ones used at present.Comment: 18 pages, 6 figures, accepted to Ap

    Disk-satellite interaction in disks with density gaps

    Full text link
    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them which can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly nonuniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existing prescriptions: most of the torque is exerted in a rather narrow region near the gap edge where Lindblad resonances accumulate, followed by an exponential fall-off with the distance from the perturber. Despite these differences, for a given gap profile the full integrated torque exerted on the disk agrees with the conventional uniform disk theory prediction at the level of ~10%. The nonlinearity of the density wave excited by the perturber is shown to decrease as the wave travels out of the gap, slowing down its nonlinear evolution and damping. Our results suggest that gap opening in protoplanetary disks and gas clearing around SMBH binaries can be more efficient than the existing theories predict. They pave the way for self-consistent calculations of the gap structure and the orbital evolution of the perturber using accurate prescription for the torque density behavior.Comment: corrected typos in reference

    The dynamics of inner dead-zone boundaries in protoplanetary disks

    Full text link
    In protoplanetary disks, the inner radial boundary between the MRI turbulent (`active') and MRI quiescent (`dead') zones plays an important role in models of the disk evolution and in some planet formation scenarios. In reality, this boundary is not well-defined: thermal heating from the star in a passive disk yields a transition radius close to the star (<0.1 au), whereas if the disk is already MRI active, it can self-consistently maintain the requisite temperatures out to a transition radius of roughly 1 au. Moreover, the interface may not be static; it may be highly fluctuating or else unstable. In this paper, we study a reduced model of the dynamics of the active/dead zone interface that mimics several important aspects of a real disk system. We find that MRI-transition fronts propagate inward (a `dead front' suppressing the MRI) if they are initially at the larger transition radius, or propagate outward (an `active front' igniting the MRI) if starting from the smaller transition radius. In both cases, the front stalls at a well-defined intermediate radius, where it remains in a quasi-static equilibrium. We propose that it is this new, intermediate stalling radius that functions as the true boundary between the active and dead zones in protoplanetary disks. These dynamics are likely implicated in observations of variable accretion, such as FU Ori outbursts, as well as in those planet formation theories that require the accumulation of solid material at the dead/active interface.Comment: 16 pages, 10 figures; MNRAS accepted; v3 final correction

    Tracing the power-law component in the energy spectrum of black hole candidates as a function of the QPO frequency

    Get PDF
    We investigated the relation between the centroid frequency of the quasi-periodic oscillation observed in the power density spectra of a sample of galactic black-hole candidates with the power-law photon index obtained from spectral fits. Our aim is to avoid inner accretion disk radius determination directly from spectral fits, given the uncertainties of the absolute values obtained in that way, but to base our analysis on the likely association of QPO frequency to a characteristic radius. We used archival RXTE data of GRS 1915+105 and published parameters for GRO 1655-40, XTE J1550-564, XTE J1748-288 and 4U 1630-47. While for low values of the QPO frequency, the two parameters are clearly correlated for each source, there is evidence for a turnoff in the correlation above a characteristic frequency, different for different sources. We discuss the possible nature of this turnoff.Comment: 11 pages, 10 figures. Accepted for publication on Astronomy & Astrophysic

    Resolved Images of Large Cavities in Protoplanetary Transition Disks

    Full text link
    Circumstellar disks are thought to experience a rapid "transition" phase in their evolution that can have a considerable impact on the formation and early development of planetary systems. We present new and archival high angular resolution (0.3" = 40-75 AU) Submillimeter Array (SMA) observations of the 880 micron dust continuum emission from 12 such transition disks in nearby star-forming regions. In each case, we directly resolve a dust-depleted disk cavity around the central star. Using radiative transfer calculations, we interpret these dust disk structures in a homogeneous, parametric model framework by reproducing their SMA visibilities and SEDs. The cavities in these disks are large (R_cav = 15-73 AU) and substantially depleted of small (~um-sized) dust grains, although their mass contents are still uncertain. The structures of the remnant material at larger radii are comparable to normal disks. We demonstrate that these large cavities are common among the millimeter-bright disk population, comprising at least 20% of the disks in the bright half of the millimeter luminosity (disk mass) distribution. Utilizing these results, we assess some of the physical mechanisms proposed to account for transition disk structures. As has been shown before, photoevaporation models do not produce the large cavity sizes, accretion rates, and disk masses representative of this sample. It would be difficult to achieve a sufficient decrease of the dust optical depths in these cavities by particle growth alone: substantial growth (to meter sizes or beyond) must occur in large (tens of AU) regions of low turbulence without also producing an abundance of small particles. Given those challenges, we suggest instead that the observations are most commensurate with dynamical clearing due to tidal interactions with low-mass companions --young brown dwarfs or giant planets on long-period orbits.Comment: ApJ, in pres

    Protoplanetary Disk Structures in Ophiuchus

    Full text link
    We present a high angular resolution (0.3" = 40 AU) SMA survey of the 870 micron thermal continuum emission from 9 of the brightest, and therefore most massive, circumstellar disks in the ~1 Myr-old Ophiuchus star-forming region. Using 2-D radiative transfer calculations, we simultaneously fit the observed continuum visibilities and broadband spectral energy distribution for each disk with a parametric structure model. Compared to previous millimeter studies, this survey includes significant upgrades in modeling, data quality, and angular resolution that provide improved constraints on key structure parameters, particularly those that characterize the spatial distribution of mass in the disks. In the context of a surface density profile motivated by similarity solutions for viscous accretion disks, the best-fit models for the sample disks have characteristic radii R_c = 20-200 AU, high disk masses M_d = 0.005-0.14 M_sun, and a narrow range of radial surface density gradients around a median γ\gamma = 0.9. These density structures are used in conjunction with accretion rate estimates from the literature to help characterize the viscous evolution of the disk material. Using the standard prescription for disk viscosities, those combined constraints indicate that α\alpha = 0.0005-0.08. Three of the sample disks show large (R = 20-40 AU) central cavities in their continuum emission morphologies, marking extensive zones where dust has been physically removed and/or has significantly diminished opacities. Based on the current requirements of planet formation models, these emission cavities and the structure constraints for the sample as a whole suggest that these young disks may eventually produce planetary systems, and have perhaps already started. (abridged)Comment: ApJ in press: 51 pages, 13 figure
    corecore