88 research outputs found

    Health Literacy During Aging

    Get PDF

    The Laboratory-Based Intermountain Validated Exacerbation (LIVE) Score Identifies Chronic Obstructive Pulmonary Disease Patients at High Mortality Risk.

    Get PDF
    Background: Identifying COPD patients at high risk for mortality or healthcare utilization remains a challenge. A robust system for identifying high-risk COPD patients using Electronic Health Record (EHR) data would empower targeting interventions aimed at ensuring guideline compliance and multimorbidity management. The purpose of this study was to empirically derive, validate, and characterize subgroups of COPD patients based on routinely collected clinical data widely available within the EHR. Methods: Cluster analysis was used in 5,006 patients with COPD at Intermountain to identify clusters based on a large collection of clinical variables. Recursive Partitioning (RP) was then used to determine a preferred tree that assigned patients to clusters based on a parsimonious variable subset. The mortality, COPD exacerbations, and comorbidity profile of the identified groups were examined. The findings were validated in an independent Intermountain cohort and in external cohorts from the United States Veterans Affairs (VA) and University of Chicago Medicine systems. Measurements and Main Results: The RP algorithm identified five LIVE Scores based on laboratory values: albumin, creatinine, chloride, potassium, and hemoglobin. The groups were characterized by increasing risk of mortality. The lowest risk, LIVE Score 5 had 8% 4-year mortality vs. 56% in the highest risk LIVE Score 1 (p < 0.001). These findings were validated in the VA cohort (n = 83,134), an expanded Intermountain cohort (n = 48,871) and in the University of Chicago system (n = 3,236). Higher mortality groups also had higher COPD exacerbation rates and comorbidity rates. Conclusions: In large clinical datasets across different organizations, the LIVE Score utilizes existing laboratory data for COPD patients, and may be used to stratify risk for mortality and COPD exacerbations

    Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation

    Get PDF
    BackgroundT-type calcium channels (TTCCs) mediate calcium influx across the cell membrane. TTCCs regulate numerous physiological processes including cardiac pacemaking and neuronal activity. In addition, they have been implicated in the proliferation, migration and differentiation of tumour tissues. Although the signalling events downstream of TTCC-mediated calcium influx are not fully elucidated, it is clear that variations in the expression of TTCCs promote tumour formation and hinder response to treatment.MethodsWe examined the expression of TTCC genes (all three subtypes; CACNA-1G, CACNA-1H and CACNA-1I) and their prognostic value in three major solid tumours (i.e. gastric, lung and ovarian cancers) via a publicly accessible database.ResultsIn gastric cancer, expression of all the CACNA genes was associated with overall survival (OS) among stage I-IV patients (all pConclusionsAlterations in CACNA gene expression are linked to tumour prognosis. Gastric cancer represents the most promising setting for further evaluation

    Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention

    Get PDF
    The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.USAMRMC {[}BC022276]; Intramural RECDA Award; Italian Association for Cancer Research (AIRC); MIUR-PRIN; Italian MIUR-FIRB Accordi di Programma; Italian ``Ministero dell'Istruzione, dell'Universita e della Ricerca (Ministry for Education, Universities and Research) - FIRB-MERIT {[}RBNE08YYBM]; Italian Ministry of Economy and Finance; Italian Ministry of Health, Ricerca Finalizzata Stemness; MIUR FIRB {[}RBAP11ZJFA\_001]; CRO; Italian Association for Cancer Research, (AIRC) (RM PI); Italian Association for Cancer Research, (AIRC) {[}MCO10016]; Italian Ministry of Health; Regione Friuli Venezia-Giuli

    The Hospital Readmissions Reduction Program and COPD: More Answers, More Questions

    No full text

    Thermogravimetric kinetics of crude glycerol.

    No full text
    The pyrolysis of the crude glycerol from a biodiesel production plant was investigated by thermogravimetry coupled with Fourier transform infrared spectroscopy. The main gaseous products are discussed, and the thermogravimetric kinetics derived. There were four distinct phases in the pyrolysis process of the crude glycerol. The presence of water and methanol in the crude glycerol and responsible for the first decomposition phase, were shown to catalyse glycerol decomposition (second phase). Unlike the pure compound, crude glycerol decomposition below 500 K leaves behind a large mass fraction of pyrolysis residues (ca. 15%), which eventually partially eliminate in two phases upon reaching significantly higher temperatures (700 and 970 K, respectively). An improved iterative Coats-Redfern method was used to evaluate non-isothermal kinetic parameters in each phase. The latter were then utilised to model the decomposition behaviour in non-isothermal conditions. The power law model (first order) predicted accurately the main (second) and third phases in the pyrolysis of the crude glycerol. Differences of 10-30 kJ/mol in activation energies between crude and pure glycerol in their main decomposition phase corroborated the catalytic effect of water and methanol in the crude pyrolysis. The 3-D diffusion model more accurately reproduced the fourth (last) phase, whereas the short initial decomposition phase was poorly simulated despite correlation coefficients ca. 0.95-0.96. The kinetics of the 3rd and 4th decomposition phases, attributed to fatty acid methyl esters cracking and pyrolysis tarry residues, were sensitive to the heating rate
    • …
    corecore