49 research outputs found

    Evaluating of the disinfection and water quality effects on UV application in the primary stage of water treatment

    Get PDF
    Background: Irradiation of water by UV has been considered as an attractive alternative for disinfection because its low-impact, pathogen killing capacity shows tremendous promise for meeting today's drinking water regulatory requirements. This study has been performed with the objective of utilizing medium pressure lamp in the preliminary stage of municipal water treatment, namely prior to water clarification and filtration. Methods: Raw water samples were irradiated for 30 s in a lab-scale closed reactor. Disinfection results showed nearly 2 log reduction in HPC for all the samples without formation of nitrite in excess of its MCL. As in a few previous works the formation of nitrite as an objectionable DBP had been reported, this study was extended by preparing synthetic water samples having different amounts of nitrate and turbidities. Results: As far as the initial nitrate concentration dose not exceed 10 mg/L N-NO3, there would be no risk of nitrite increasing in excess of the MCL. Conclusion: Meeting the goal of at least 90 % disinfection for water samples with turbidity levels of as high as 750 NTU is possible by utilizing medium- pressure UV lamp

    The Effect of Raindrop Impact on Runoff and Soil Loss from Rills under Different Rainfall Intensities

    Get PDF
    Introduction  Rill erosion is one of the main factors of soil degradation, especially in rainfed lands in semi-arid regions. These soils have relatively lower organic matter content with weakly-aggregated units, which increases their susceptibility to water erosion processes. Conventional tillage systems are adversely affect on soil structure and surface soil cover in rainfed lands. Raindrop energy and flow shear stress are the main erosive factors in the slope lands. The raindrop impact destroys soil structure and changes it to erodible unites; micro-aggregates and single particles, and so makes them to more detachment. A few studies have been done on the role of raindrop impact to soil erosion by water. Nevertheless, there is no sufficient information on the effect of raindrop impact on soil loss in the rills particularly in semi-arid regions. Therefore, this study was conducted to investigate the role of raindrop impact on soil loss from rills in various soil textures under different rainfall intensities.   Materials and Methods  A laboratory experiment was performed on two soil textures (clay loam and sandy loam) under four rainfall intensities (30, 50, 72 and 83 mm.h-1) in two rainfall conditions (under raindrops impact and without raindrops impact). Soil samples (0-30 cm) were taken from a semi-arid region in Zanjan province in 2020. The experiments were set up in an erosion flume with 100 cm long and 60 cm width and 15 cm depth which were exposed to simulated rainfalls for 30 min duration. Runoff and soil loss were measured at three rills under slope gradient 10% in the two rainfall conditions for each rainfall intensity. Soil loss from rills was determined as the mass of sediment collected from rill outlet per rill surface area (g.m-2). Under raindrop impact, the soil was exposed directly to raindrop impact and under without raindrop impact, a metal mesh sheet was used to eliminate raindrops impact to soil surface. The role of raindrops impact to runoff and soil loss was computed from the difference of runoff and soil loss under raindrops impact and without raindrops impacts. A t-test was used to assess the role of raindrops impact between the two rainfall conditions for the soils and rainfall intensities.     Results and Discussion  Results indicated that runoff production and soil loss were significantly affected by the soil texture and rainfall intensity. Runoff and soil loss under raindrops impact increased in the soils with increasing rainfall intensity. Clay loam showed more runoff production and soil loss than sandy loam which was associated to lower aggregate stability and hydraulic conductivity. Runoff and soil loss in the two soils and four rainfall intensities were significantly affected by raindrops impact. Runoff production and soil loss except to 72 mm.h-1 rainfall intensity were very higher under raindrop impact than without raindrop impact. It seems under 72 mm.h-1 rainfall intensity, raindrops impact varied the rill’s morphology and prevent more runoff production. Runoff production in clay loam and sandy loam under raindrop impact were increased by 44 and 36 percent, respectively (p< 0.01). Soil loss resulted by raindrop impact in clay loam and sandy loam increased by 53 and 62 percent, respectively (p< 0.01). Raindrops impact had more importance in soil loss rather than runoff production. This result is related to the role of raindrops impact in destroying aggregates and producing more erodible soil particles and closing soil macrospores and declining water infiltration. The role of raindrop impact in runoff production and soil loss varied among the rainfall intensities. A slight reduction in the role of raindrop impact in runoff and soil loss was occurred with increasing rainfall intensity, especially in sandy loam.   Conclusion  The role of raindrop impact in runoff production and soil loss was significantly affected by soil type and rainfall intensity. Raindrops impact has more important in runoff and soil loss in the soils having higher aggregate stability and more hydraulic conductivity. The role of raindrop impact in runoff and soil loss in these soils declines with increasing rainfall intensity. In general, maintain soil surface cover is essential to control raindrops impact and decrease runoff and soil loss in semi-arid areas. The importance of soil surface cover is most obvious under different rainfalls in weakly-aggregated soils which are dominant in many slope lands. Also, soil surface cover has important role in controlling runoff and soil loss under heavy rainfalls in soils with more water-stable aggregates. Prevention from intensive tillage and using conservation tillage systems such as minimum tillage are effective strategies in controlling raindrop impact in rainfed lands in semi-arid regions

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Childhood malnutrition is associated with high morbidity and mortality globally1. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood2. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0�59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards3�5. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization�s median growth reference standards for a healthy population6. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)7; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes8. Building from our previous work mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99 of affected children live1, aggregated to policy-relevant first and second (for example, districts or counties) administrative-level units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40 and wasting to less than 5 by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications. © 2020, The Author(s)

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    BACKGROUND: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    ِDetermining the Efficiency of WWTP in Khoy Power Plant and Improving Phosphorus Removal by Anoxic-Oxic Process

    No full text
    "n "nBackgrounds and Objectives: Now a days modified activated sludge ways are used for standard removing nutrient substances from waste water that is named Enhanced biological phosphorus removal One of the most suitable ways is Anoxic-Oxic(A/O) process. The goal of this research is investigation and solving existing problems of Khoy power plant(P.P) waste water treatment plant(WWTP)and optimizing of phosphorus removal in it."nMaterials and Methods: This research is done full scale in this treatment plant. The treatment plant was operating with extended aeration process, and some problems had, so in the first stage with in investigation of total efficiency, problems and their reasons determined. In the second stage after operational modifications existing problems was solved and real efficiency of treatment plant particularly for phosphorus(P) removal determined. In the third stage changes, system converted to A/O process and new system was tested with Changing parameters like food/microorganism(F/M), return sludge ratio(RAS)and sludge retention time(SRT)"nRisults: In the first stage the most important problems were over concentration of BOD,TSS, and P in effluent of treatment plant and overgrows of alga observed in parts of treatment plant and effluent receiving conduit. The main reason of high concentration of P was considered releasing of sludge. In the second stage operating condition modification efficiency of P removal increased from 50to 62 percent. In the end of third stage value of P removal reached to %82 and the most suitable of anoxic contact time was determined 3to4 hours, SRT terry day and F/M ratio o.12,that the most effective change has been the decrease of SRT to three days. "nConclusion: Adjusting of operating factors like SRT,RAS, sludge processing way in WWTP can increase P removal in them with in total efficiency remaining, such as in this case it was %12. In waste water treatment particularly for P removal the A/O process is suitable so in this project its effect on P removal efficiency has been %20

    AN EDUCATIONAL NEEDS ASSESSMENT FROM SOME ALUMNI OF YAZD DENTALSCHOOL

    No full text

    Efficiency study for integrated stabilization pond (ISP) in municipal wastewater treatment

    No full text
    History and Objectives: Considering the high cost of mechanical treatment of wastewater and the necessity to investigate more economical methods, specially the ones involving natural treatment processes, a study on efficiency of integrated stabilization pond (ISP) was conducted in Shoosh Sewage Treatment Plant during 1999. Materials and Methods: This ISP experimental study was conducted during three seasons with two types of raw sewage feeding. The system consists of an anaerobic pond in combination with facultative pond in series with a high rate and a maturation samples from inflow and effluent were taken on weekly basis and COD, BOD5, TSS, total nitrogen and total phosphorous were checked, the resulting reduction in mentioned parameters formed the basis of a statistical evaluation. Results: Pollutants reduction was higher in spring compared with summer and fall. BOD5 with 89 reduction showed the highest and total phosphorous with 60 showed the lowest reduction levels during the said period. The level of sewage pollutant reduction during three stages of the study shows that the anaerobic pond in combination with facultative pond registed the highest percentage of pollutant removal. Conclusion: ISP systems are effective in treatment of sewage. Up flow of sewage in fermentation pit has a positive effect on the system efficiency and shows the fermentation pits considerable role in facultative ponds. Since there is little available experience about ISP in Iran, more investigation on the subject is recommended
    corecore