220 research outputs found

    Performance effects of setting a high reference point for peer-performance comparison

    Get PDF
    We conduct a field experiment, based on a registered report accepted by the Journal of Accounting Research, to test performance effects of setting a high reference point for peer-performance comparison. Relative to providing the median as a reference point for online students to compare themselves to, providing the top quartile: damps performance for those below the median; boosts performance for those between the median and top quartile; and, in the case of outcome but not process comparison, boosts performance for those above the top quartile. We do not find that either reference point yields a greater average performance effect. However, providing the more effective reference point in each partition of initial performance yields a 40% greater performance effect than providing either reference point uniformly. Students access the online courses intermittently over the span of a year. Our effects derive from small portions of our treatment groups—5% in the case of process comparison and 26% in the case of outcome comparison—who accessed treatment and who were, on average, more active leading up to and during our interventio

    Kac and New Determinants for Fractional Superconformal Algebras

    Full text link
    We derive the Kac and new determinant formulae for an arbitrary (integer) level KK fractional superconformal algebra using the BRST cohomology techniques developed in conformal field theory. In particular, we reproduce the Kac determinants for the Virasoro (K=1K=1) and superconformal (K=2K=2) algebras. For K3K\geq3 there always exist modules where the Kac determinant factorizes into a product of more fundamental new determinants. Using our results for general KK, we sketch the non-unitarity proof for the SU(2)SU(2) minimal series; as expected, the only unitary models are those already known from the coset construction. We apply the Kac determinant formulae for the spin-4/3 parafermion current algebra ({\em i.e.}, the K=4K=4 fractional superconformal algebra) to the recently constructed three-dimensional flat Minkowski space-time representation of the spin-4/3 fractional superstring. We prove the no-ghost theorem for the space-time bosonic sector of this theory; that is, its physical spectrum is free of negative-norm states.Comment: 33 pages, Revtex 3.0, Cornell preprint CLNS 93/124

    New Jacobi-Like Identities for Z_k Parafermion Characters

    Full text link
    We state and prove various new identities involving the Z_K parafermion characters (or level-K string functions) for the cases K=4, K=8, and K=16. These identities fall into three classes: identities in the first class are generalizations of the famous Jacobi theta-function identity (which is the K=2 special case), identities in another class relate the level K>2 characters to the Dedekind eta-function, and identities in a third class relate the K>2 characters to the Jacobi theta-functions. These identities play a crucial role in the interpretation of fractional superstring spectra by indicating spacetime supersymmetry and aiding in the identification of the spacetime spin and statistics of fractional superstring states.Comment: 72 pages (or 78/2 = 39 pages in reduced format

    Low-Lying States of the Six-Dimensional Fractional Superstring

    Full text link
    The K=4K=4 fractional superstring Fock space is constructed in terms of \bZ_4 parafermions and free bosons. The bosonization of the \bZ_4 parafermion theory and the generalized commutation relations satisfied by the modes of various parafermion fields are reviewed. In this preliminary analysis, we describe a Fock space which is simply a tensor product of \bZ_4 parafermion and free boson Fock spaces. It is larger than the Lorentz-covariant Fock space indicated by the fractional superstring partition function. We derive the form of the fractional superconformal algebra that may be used as the constraint algebra for the physical states of the FSS. Issues concerning the associativity, modings and braiding properties of the fractional superconformal algebra are also discussed. The use of the constraint algebra to obtain physical state conditions on the spectrum is illustrated by an application to the massless fermions and bosons of the K=4K=4 fractional superstring. However, we fail to generalize these considerations to the massive states. This means that the appropriate constraint algebra on the fractional superstring Fock space remains to be found. Some possible ways of doing this are discussed.Comment: 69 pages, LaTeX, CLNS 91/112

    Nano-scale composition of commercial white powders for development of latent fingerprints on adhesives

    Get PDF
    This is the post-print version of the article - Copyright @ 2010 Elsevier.Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide can be suspended in a surfactant and used in the form of a powder suspension. Commercially available products, whilst having nominally similar composition, show varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. X-ray fluorescence (XRF), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and laser particle sizing of the fingerprint powders show TiO2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material, with traces of sodium and sulphur. Such aluminosilicates are commonly used as anti-caking agents and to aid adhesion or functionality of some fingerprint powders; however, the morphology, thickness, coverage and composition of the aluminosilicates are the primary differences between the white powder formulations and could be related to variation in the efficacy of print development.This work is part funded by the Home Office Scientific Development Branch, UK

    Hyperbolic billiards of pure D=4 supergravities

    Full text link
    We compute the billiards that emerge in the Belinskii-Khalatnikov-Lifshitz (BKL) limit for all pure supergravities in D=4 spacetime dimensions, as well as for D=4, N=4 supergravities coupled to k (N=4) Maxwell supermultiplets. We find that just as for the cases N=0 and N=8 investigated previously, these billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac-Moody algebras. Hence, the dynamics is chaotic in the BKL limit. A new feature arises, however, which is that the relevant Kac-Moody algebra can be the Lorentzian extension of a twisted affine Kac-Moody algebra, while the N=0 and N=8 cases are untwisted. This occurs for N=5, N=3 and N=2. An understanding of this property is provided by showing that the data relevant for determining the billiards are the restricted root system and the maximal split subalgebra of the finite-dimensional real symmetry algebra characterizing the toroidal reduction to D=3 spacetime dimensions. To summarize: split symmetry controls chaos.Comment: 21 page

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Kac-Moody algebras in perturbative string theory

    Get PDF
    The conjecture that M-theory has the rank eleven Kac-Moody symmetry e11 implies that Type IIA and Type IIB string theories in ten dimensions possess certain infinite dimensional perturbative symmetry algebras that we determine. This prediction is compared with the symmetry algebras that can be constructed in perturbative string theory, using the closed string analogues of the DDF operators. Within the limitations of this construction close agreement is found. We also perform the analogous analysis for the case of the closed bosonic string.Comment: 31 pages, harvmac (b), 4 eps-figure

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore