191 research outputs found
Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions
Babesia microti, a tick-transmitted, intraerythrocytic protozoan parasite circulating mainly among small mammals, is the primary cause of human babesiosis. While most cases are transmitted by Ixodes ticks, the disease may also be transmitted through blood transfusion and perinatally. A comprehensive analysis of genome composition, genetic diversity, and gene expression profiling of seven B. microti isolates revealed that genetic variation in isolates from the Northeast United States is almost exclusively associated with genes encoding the surface proteome and secretome of the parasite. Furthermore, we found that polymorphism is restricted to a small number of genes, which are highly expressed during infection. In order to identify pathogen-encoded factors involved in host-parasite interactions, we screened a proteome array comprised of 174 B. microti proteins, including several predicted members of the parasite secretome. Using this immuno-proteomic approach we identified several novel antigens that trigger strong host immune responses during the onset of infection. The genomic and immunological data presented herein provide the first insights into the determinants of B. microti interaction with its mammalian hosts and their relevance for understanding the selective pressures acting on parasite evolution
Recommended from our members
Islet Harvest in Carbon Monoxide-Saturated Medium for Chronic Pancreatitis Patients Undergoing Islet Autotransplantation
Stresses encountered during human islet isolation lead to unavoidable beta-cell death after transplantation. This reduces the chance of insulin independence in chronic pancreatitis patients undergoing total pancreatectomy and islet autotransplantation. We tested whether harvesting islets in carbon monoxide-saturated solutions is safe and can enhance islet survival and insulin independence after total pancreatectomy and islet autotransplantation. Chronic pancreatitis patients who consented to the study were randomized into carbon monoxide (islets harvested in a carbon monoxide-saturated medium) or control (islets harvested in a normal medium) groups. Islet yield, viability, oxygen consumption rate, beta-cell death (measured by unmethylated insulin DNA), and serum cytokine levels were measured during the peri-transplantation period. Adverse events, metabolic phenotypes, and islet function were measured prior and at 6 months post-transplantation. No adverse events directly related to the infusion of carbon monoxide islets were observed. Carbon monoxide islets showed significantly higher viability before transplantation. Subjects receiving carbon monoxide islets had less beta-cell death, decreased CCL23, and increased CXCL12 levels at 1 or 3 days post transplantation compared with controls. Three in 10 (30%) of the carbon monoxide subjects and none of the control subjects were insulin independent. This pilot trial showed for the first time that harvesting human islets in carbon monoxide-saturated solutions is safe for total pancreatectomy and islet autotransplantation patients.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Spin-Isospin Structure and Pion Condensation in Nucleon Matter
We report variational calculations of symmetric nuclear matter and pure
neutron matter, using the new Argonne v18 two-nucleon and Urbana IX
three-nucleon interactions. At the equilibrium density of 0.16 fm^-3 the
two-nucleon densities in symmetric nuclear matter are found to exhibit a
short-range spin-isospin structure similar to that found in light nuclei. We
also find that both symmetric nuclear matter and pure neutron matter undergo
transitions to phases with pion condensation at densities of 0.32 fm^-3 and 0.2
fm^-3, respectively. Neither transtion occurs with the Urbana v14 two-nucleon
interaction, while only the transition in neutron matter occurs with the
Argonne v14 two-nucleon interaction. The three-nucleon interaction is required
for the transition to occur in symmetric nuclear matter, whereas the the
transition in pure neutron matter occurs even in its absence. The behavior of
the isovector spin-longitudinal response and the pion excess in the vicinity of
the transition, and the model dependence of the transition are discussed.Comment: 44 pages RevTeX, 15 postscript figures. Minor modifications to
original postin
Isoforms of endothelin-converting enzyme-1 (ECE-1) have opposing effects on prostate cancer cell invasion
Cross-talk between tumour and stromal cells can profoundly influence cancer cell invasion by increasing the availability of mitogenic peptides such as endothelin-1 (ET-1). Endothelin-1 is elevated in men with metastatic prostate cancer (PC), and can exert both an autocrine (epithelial) and a paracrine (stromal) influence on growth. Endothelin-1 is generated from its inactive precursor big-ET-1 by endothelin-converting enzyme 1 (ECE-1). We and others have demonstrated that ECE-1 expression is significantly elevated in tumours and surrounding stromal tissue. Our current data show siRNA-mediated knockdown of stromal ECE-1 reduces epithelial (PC-3) cell invasion in coculture. Interestingly, readdition of ET-1 only partially recovers this effect suggesting a novel role for ECE-1 independent of ET-1 activation. Parallel knockdown of ECE-1 in both stromal and epithelial compartments results in an additive decrease in cell invasion. We extrapolated this observation to the four recognised isoforms ECE-1a, ECE-1b, ECE-1c and ECE-1d. Only ECE-1a and ECE-1c were significant but with reciprocal effects on cell invasion. Transient ECE-1c overexpression increased PC-3 invasiveness through matrigel, whereas transient ECE-1a expression suppressed invasion. Furthermore, transient ECE-1a expression in stromal cells strongly counteracts the effect of transient ECE-1c expression in PC-3 cells. The ECE-1 isoforms may, therefore, be relevant targets for antiinvasive therapy in prostate and other cancers
Self-consistent Green's function method for nuclei and nuclear matter
Recent results obtained by applying the method of self-consistent Green's
functions to nuclei and nuclear matter are reviewed. Particular attention is
given to the description of experimental data obtained from the (e,e'p) and
(e,e'2N) reactions that determine one and two-nucleon removal probabilities in
nuclei since the corresponding amplitudes are directly related to the imaginary
parts of the single-particle and two-particle propagators. For this reason and
the fact that these amplitudes can now be calculated with the inclusion of all
the relevant physical processes, it is useful to explore the efficacy of the
method of self-consistent Green's functions in describing these experimental
data. Results for both finite nuclei and nuclear matter are discussed with
particular emphasis on clarifying the role of short-range correlations in
determining various experimental quantities. The important role of long-range
correlations in determining the structure of low-energy correlations is also
documented. For a complete understanding of nuclear phenomena it is therefore
essential to include both types of physical correlations. We demonstrate that
recent experimental results for these reactions combined with the reported
theoretical calculations yield a very clear understanding of the properties of
{\em all} protons in the nucleus. We propose that this knowledge of the
properties of constituent fermions in a correlated many-body system is a unique
feature of nuclear physics.Comment: 110 pages, accepted for publication on Prog. Part. Nucl. Phy
‘Opt-out’ referrals after identifying pregnant smokers using exhaled air carbon monoxide: impact on engagement with smoking cessation support
Background. In the UK, free smoking cessation support is available to pregnant women; only a minority access this. ‘Opt-out’ referrals to stop smoking services (SSS) are recommended by UK guidelines. These involve identifying pregnant smokers using exhaled carbon monoxide (CO) and referring them for support unless they object.
Methods. To assess impact of ‘opt-out’ referrals for pregnant smokers on SSS uptake and effectiveness, we conducted a ‘before-after’ service development evaluation. In a six-month ‘before’ period there was a routine ‘opt-in’ referral system for self-reported smokers at antenatal ‘booking’ appointments. In a six-month ‘after’ period, additional ‘opt-out’ referrals were introduced at 12 weeks ultrasound appointments; women with CO≥4ppm were referred to, and outcome data were collected from, local SSS.
Results. Approximately 2300 women attended antenatal care in each period. Before the implementation 536 (23.4%) women reported smoking at ‘booking’ and 290 (12.7%) were referred to SSS. After the implementation 524 (22.9%) women reported smoking at ‘booking’, an additional 156 smokers (6.8%) were identified via the ‘opt-out’ referrals and, in total, 421 (18.4%) were referred to SSS.
Over twice as many women set a quit date with the SSS after ‘opt-out’ referrals were implemented (121 (5.3%, 95%CI: 4.4%-6.3%) compared to 57 (2.5%, 95%CI: 1.9%-3.2%) before implementation) and reported being abstinent four weeks later (93 (4.1%, 95%CI: 3.3%-4.9%) compared to 46 (2.0%, 1.5%-2.7%) before implementation).
Conclusions. In a hospital with an ‘opt-in’ referral system, adding CO screening with ‘opt-out’ referrals as women attended ultrasound examinations doubled numbers of pregnant smokers setting quit dates and reporting smoking cessation
Circulating Unmethylated Insulin DNA As a Biomarker of Human Beta Cell Death: A Multi-laboratory Assay Comparison
Context: There is an unmet need for biomarkers of pancreatic beta-cell death to improve early diagnosis of type 1 diabetes, enroll subjects into clinical trials, and assess treatment response. To address this need, several groups developed assays measuring insulin deoxyribonucleic acid (DNA) with unmethylated CpG sites in cell-free DNA. Unmethylated insulin DNA should be derived predominantly from beta-cells and indicate ongoing beta-cell death.
Objective: To assess the performance of three unmethylated insulin DNA assays.
Design and participants: Plasma or serum samples from 13 subjects undergoing total pancreatectomy and islet autotransplantation were coded and provided to investigators to measure unmethylated insulin DNA. Samples included a negative control taken post-pancreatectomy but pretransplant, and a positive control taken immediately following islet infusion. We assessed technical reproducibility, linearity, and persistence of detection of unmethylated insulin DNA for each assay.
Results: All assays discriminated between the negative sample and samples taken directly from the islet transplant bag; 2 of 3 discriminated negative samples from those taken immediately after islet infusion. When high levels of unmethylated insulin DNA were present, technical reproducibility was generally good for all assays.
Conclusions: The measurement of beta cell cell-free DNA, including insulin, is a promising approach, warranting further testing and development in those with or at-risk for type 1 diabetes, as well as in other settings where understanding the frequency or kinetics of beta cell death could be useful
Babesia microti infection changes host spleen architecture and is cleared by a Th1 immune response
Babesia microti is a malaria-like parasite, which infects ~2000 people annually, such that babesiosis is now a notifiable disease in the United States. Immunocompetent individuals often remain asymptomatic and are tested only after they feel ill. Susceptible C3H/HeJ mice show several human-like disease manifestations and are ideal to study pathogenesis of Babesia species. In this study, we examined parasitemia of B. microti at different time points and assessed its impact on hemoglobin levels in blood, on spleen pathology and overall immune response in C3H/HeJ mice. Peak parasitemia of 42.5% was immediately followed by diminished hemoglobin level. Parasitemia at 21 days of infection was barely detectable by microscopy presented 5.7 × 108 to 5.9 × 109 B. microti DNA copies confirming the sensitivity of our qPCR. We hypothesize that qPCR detects DNA released from recently lysed parasites or from extracellular B. microti in blood, which are not easily detected in blood smears and might result in under-diagnosis of babesiosis in patients. Splenectomized patients have been reported to show increased babesiosis severity and result in high morbidity and mortality. These results emphasize the importance of splenic immunity in resolution of B. microti infection. Splenomegaly in infected mice associated with destruction of marginal zone with lysed erythrocytes and released B. microti life forms in our experiments support this premise. At conclusion of the experiment at 21 days post-infection, significant splenic B and T cells depletion and increase in macrophages levels were observed in B. microti infected mice suggesting a role of macrophage in disease resolution. Infected mice also showed significantly higher plasmatic concentration of CD4 Th1 cells secreted cytokines such as IL-2 and IFN-γ while cytokines such as IL-4, IL-5, and IL-13 secreted by Th2 cells increase was not always significant. Thus, Th1 cells-mediated immunity appears to be important in clearance of this intracellular pathogen. Significant increase in IL-6 that promotes differentiation of Th17 cells was observed but it resulted in only moderate change in IL-17A, IL-17F, IL-21, and IL-22, all secreted by Th17 cells. A similar immune response to Trypanosoma infection has been reported to influence the clearance of this protozoan, and co-infecting pathogen(s)
Genetic Structure of the Tiger Mosquito, Aedes albopictus, in Cameroon (Central Africa)
Background: Aedes albopictus (Skuse, 1884) (Diptera: Culicidae), a mosquito native to Asia, has recently invaded all five continents. In Central Africa it was first reported in the early 2000s, and has since been implicated in the emergence of arboviruses such as dengue and chikungunya in this region. Recent genetic studies of invasive species have shown that multiple introductions are a key factor for successful expansion in new areas. As a result, phenotypic characters such as vector competence and insecticide susceptibility may vary within invasive pest species, potentially affecting vector efficiency and pest management. Here we assessed the genetic variability and population genetics of Ae. albopictus isolates in Cameroon (Central Africa), thereby deducing their likely geographic origin. Methods and Results: Mosquitoes were sampled in 2007 in 12 localities in southern Cameroon and analyzed for polymorphism at six microsatellite loci and in two mitochondrial DNA regions (ND5 and COI). All the microsatellite markers were successfully amplified and were polymorphic, showing moderate genetic structureamong geographic populations (F-ST = 0.068, P<0.0001). Analysis of mtDNA sequences revealed four haplotypes each for the COI and ND5 genes, with a dominant haplotype shared by all Cameroonian samples. The weak genetic variation estimated from the mtDNA genes is consistent with the recent arrival of Ae. albopictus in Cameroon. Phylogeographic analysis based on COI polymorphism indicated that Ae. albopictus populations from Cameroon are related to tropical rather than temperate or subtropical outgroups. Conclusion: The moderate genetic diversity observed among Cameroonian Ae. albopictus isolates is in keeping with recent introduction and spread in this country. The genetic structure of natural populations points to multiple introductions from tropical regions
- …