We report variational calculations of symmetric nuclear matter and pure
neutron matter, using the new Argonne v18 two-nucleon and Urbana IX
three-nucleon interactions. At the equilibrium density of 0.16 fm^-3 the
two-nucleon densities in symmetric nuclear matter are found to exhibit a
short-range spin-isospin structure similar to that found in light nuclei. We
also find that both symmetric nuclear matter and pure neutron matter undergo
transitions to phases with pion condensation at densities of 0.32 fm^-3 and 0.2
fm^-3, respectively. Neither transtion occurs with the Urbana v14 two-nucleon
interaction, while only the transition in neutron matter occurs with the
Argonne v14 two-nucleon interaction. The three-nucleon interaction is required
for the transition to occur in symmetric nuclear matter, whereas the the
transition in pure neutron matter occurs even in its absence. The behavior of
the isovector spin-longitudinal response and the pion excess in the vicinity of
the transition, and the model dependence of the transition are discussed.Comment: 44 pages RevTeX, 15 postscript figures. Minor modifications to
original postin