828 research outputs found

    Thermodynamic consistency for nuclear matter calculations

    Full text link
    We investigate the relation between the binding energy and the Fermi energy and between different expressions for the pressure in cold nuclear matter. For a self-consistent calculation based on a Φ\Phi derivable TT-matrix approximation with off-shell propagators the thermodynamic relations are well satisfied unlike for a GG-matrix or a TT-matrix approach using quasi-particle propagators in the ladder diagrams

    Screening Masses of Scalar and Pseudo-scalar Excitations in Quark-gluon Plasma

    Get PDF
    The quark-gluon plasma (QGP) excitations, corresponding to the scalar and pseudoscalar meson quantum numbers, for different temperatures are calculated. Analysis is performed in the Hard Thermal Loop (HTL) Approximation and leads to a better understanding of the excitations of QGP in the deconfined phase and is also of relevance for lattice studies

    Feynman Diagrams and Rooted Maps

    Get PDF
    The Rooted Maps Theory, a branch of the Theory of Homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the genus of a Feynman diagram, which totally differs from the usual one, is given.Comment: 20 pages, 30 figures, 3 table

    A Microscopic Energy- and Density-Dependent Effective Interaction and its Test by Nucleus-Nucleus Scattering

    Get PDF
    An effective nucleon-nucleon interaction calculated in nuclear matter from the Bonn potential has been parametrized in terms of a local density- and energy-dependent two-body interaction. This allows to calculate the real part of the nucleus-nucleus scattering potential and to test this effective interaction over a wide region of densities (ρ3ρ0\rho \leq 3\rho_0) produced dynamically in scattering experiments. Comparing our calculations with empirical potentials extracted from data on light and heavy ion scattering by model-unrestricted analysis methods, we find quantitative agreement with the exception of proton scattering. The failure in this case may be traced back to the properties of the effective interaction at low densities, for which the nuclear matter results are not reliable. The success of the interaction at high overlap densities confirms the empirical evidence for a soft equation of state for cold nuclear matter.Comment: 8 pages 3 Figures included, to appear in Phys. Lett.

    Pseudoscalar Meson Temporal Correlation Function in HTL approach

    Full text link
    The temporal pseudoscalar meson correlation function in a QCD plasma is investigated in a range of temperatures exceeding TcT_c and first time for a finite momenta which is of the experimental interest. The imaginary time formalism is employed for the finite temperature calculations. The behavior of the meson spectral function and of the temporal correlator is studied in the HTL approximation, where one replaces the free thermal quark propagators with the HTL resumed ones.Comment: 7 pages, 5 Postscript figure

    Quantum mechanical ab-initio simulation of the electron screening effect in metal deuteride crystals

    Full text link
    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab-initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required.Comment: 11 pages, 12 figures, svjour class. To be published in Eur. Phys. J.

    Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implications

    Full text link
    Recent measurements of the reaction d(d,p)t in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for divers host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls which make them and the data analysis particularly error-prone. There are multi-parameter collateral effects which are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations due to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. In order to address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-H\"{u}ckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays could be clearly excluded.Comment: 22 pages, 12 figures, REVTeX4, 2-column format. Submitted to Phys. Rev. C; accepte
    corecore