826 research outputs found

    Faddeev treatment of long-range correlations and the one-hole spectral function of O16

    Get PDF
    The Faddeev technique is employed to study the influence of both particle-particle and particle-hole phonons on the one-hole spectral function of O16. Collective excitations are accounted for at a random phase approximation level and subsequently summed to all orders by the Faddeev equations to obtain the nucleon self-energy. An iterative procedure is applied to investigate the effects of the self-consistent inclusion of the fragmentation in the determination of the phonons and the corresponding self-energy. The present results indicate that the characteristics of hole fragmentation are related to the low-lying states of O16.Comment: 10 pages, 6 figures, 3 tables. Submitted to Phys.Rev.

    Forging the Link between Nuclear Reactions and Nuclear Structure

    Full text link
    A review of the recent applications of the dispersive optical model (DOM) is presented. Emphasis is on the nonlocal implementation of the DOM that is capable of describing ground-state properties accurately when data like the nuclear charge density are available. The DOM, conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. We have recently introduced a nonlocal dispersive optical potential for both the real and imaginary part. Nonlocal absorptive potentials yield equivalent elastic differential cross sections for 40{}^{40}Ca as compared to local ones but change the ℓ\ell-dependent absorption profile suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e,e′p)(e,e'p) and (p,2p)(p,2p) reactions are correctly described, including the energy distribution of about 10\% high-momentum protons obtained at Jefferson Lab. The nonlocal DOM allows a complete description of experimental data both above (up to 200 MeV) and below the Fermi energy in 40^{40}Ca. It is further demonstrated that elastic nucleon-nucleus scattering data constrain the spectral strength in the continuum of orbits that are nominally bound in the independent-particle model. Extension of this analysis to 48^{48}Ca allows a prediction of the neutron skin of this nucleus that is larger than most predictions made so far.Comment: 15 pages, 8 figures; Conference proceedings of CNR*15 workshop, Tokyo, October 2015 to be published in EPJ Web of Conference

    Self-consistent Green's function calculation of 16O at small missing energies

    Get PDF
    Calculations of the one-hole spectral function of 16O for small missing energies are reviewed. The self-consistent Green's function approach is employed together with the Faddeev equations technique in order to study the coupling of both particle-particle and particle-hole phonons to the single-particle motion. The results indicate that the characteristics of hole fragmentation are related to the low-lying states of 16O and an improvement of the description of this spectrum, beyond the random phase approximation, is required to understand the experimental strength distribution. A first calculation in this direction that accounts for two-phonon states is discussed.Comment: Proceedings of ``Nuclear Forces and the Quantum Many-Body Problem'', INT, Oct. 4-8, 200

    Asymmetry dependence of proton correlations

    Get PDF
    A dispersive optical model analysis of p+40Ca and p+48Ca interactions has been carried out. The real and imaginary potentials have been constrained from fits to elastic scattering data, reaction cross sections, and level properties of valence hole states deduced from (e,e'p) data. The surface imaginary potential was found to be larger overall and the gap in this potential on either side of the Fermi energy was found to be smaller for the neutron-rich p+48Ca system. These results imply that protons with energies near the Fermi surface experience larger correlations with increasing asymmetry.Comment: 4 pages, 5 figure

    Pairing properties of nucleonic matter employing dressed nucleons

    Full text link
    A survey of pairing properties of nucleonic matter is presented that includes the off-shell propagation associated with short-range and tensor correlations. For this purpose, the gap equation has been solved in its most general form employing the complete energy and momentum dependence of the normal self-energy contributions. The latter correlations include the self-consistent calculation of the nucleon self-energy that is generated by the summation of ladder diagrams. This treatment preserves the conservation of particle number unlike approaches in which the self-energy is based on the Brueckner-Hartree-Fock approximation. A huge reduction in the strength as well as temperature and density range of 3S1{}^3S_1-3D1{}^3D_1 pairing is obtained for nuclear matter as compared to the standard BCS treatment. Similar dramatic results pertain to 1S0{}^1S_0 pairing of neutrons in neutron matter.Comment: 15 pages, 10 figure

    Dispersants and Seafood Safety Assessment of the potential impact of Corexit® oil dispersants on seafood safety

    Get PDF
    The April 20, 2010 explosion and subsequent sinking of the Deepwater Horizon oil production platform (DWH) resulted in the largest oil spill in U.S. history. On April 29th, a Spill of National Significance was declared as roughly 53 thousand barrels of oil per day flowed into the Gulf of Mexico (GOM). The U.S. Coast Guard estimated 4.9 million barrels of crude oil escaped before the damaged DWH wellhead was sealed on July 15, 2010 (National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling 2010). Oil spill clean-up methods included skimming operations, burning of surface oil, siphoning oil into tankers directly from the wellhead, and the application of chemical dispersants. The first 3 methods mentioned above physically removed spilled oil from GOM waters. The last method, chemical dispersion, distributed insoluble fractions of the oil into the water-column. This was done for 3 reasons: 1) to reduce the exposure of response personnel at-sea to volatile organic compounds emanating from the surface slick; 2) to prevent concentrated surface oil from reaching, and damaging, fragile coastal wetlands, beaches and shoreline communities; and 3) to accelerate the break-down of spilled oil by natural microorganisms in the environment. The oil spill response contingency plan (RCP) applicable to the GOM (EPA Regions 4 and 6 within the National Response Plan framework) pre-authorized the use of Nalco Co. (Naperville, IL) oil dispersants Corexit® 9527 and Corexit® 9500 among other pre-approved product formulations. From April 22 to July 19, 2010 an estimated 1.1 million gallons of Corexit® dispersant were applied over approximately 300 square miles of oiled surface waters in the GOM and 771,000 gallons were injected directly into the oil free-flowing from the wellhead 5,100 feet beneath the surface (National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling 2010). Corexit® 9527 comprised approximately 215,000 gallons (~11%) of the total dispersant volume applied to the surface oil slick and was discontinued on May 22. The unprecedented volume of chemical dispersants used to combat the DWH oil spill elicited public concerns for the health of responders, coastal communities, marine life, and the safety of seafood from impacted areas of the GOM. This document will address the latter of these concerns
    • …
    corecore