8 research outputs found

    Management of Peripheral Arthritis in Patients With Psoriatic Arthritis: An Updated Literature Review Informing the 2021 GRAPPA Treatment Recommendations.

    Get PDF
    OBJECTIVE We aimed to compile evidence for the efficacy and safety of therapeutic options for the peripheral arthritis domain of psoriatic arthritis (PsA) for the revised 2021 Group in Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) treatment recommendations. METHODS A working group consisting of clinicians and patient research partners was convened. We reviewed the evidence from new randomized controlled trials (RCTs) for PsA treatment from February 19, 2013, to August 28, 2020. We used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE)-informed approach to derive evidence for the classes of therapeutic options for 3 patient groups: (1) naïve to treatment, (2) inadequate response to conventional synthetic disease-modifying antirheumatic drugs (csDMARDs), and (3) inadequate response to biologic DMARDs (bDMARDs). Recommendations were derived through consensus meetings. RESULTS The evidence review included 69 RCTs. We derived GRADE evidence for each class of therapeutic options and achieved consensus for the recommendations. For patients naïve to treatment, the working group strongly recommends csDMARDs (methotrexate, sulfasalazine, leflunomide) and phosphodiesterase 4 inhibitors, and emphasizes regular assessment and early escalation to achieve treatment target. bDMARDs (tumor necrosis factor inhibitors [TNFi], interleukin 17 inhibitors [IL-17i], IL-12/23i, IL-23i) and Janus kinase inhibitors (JAKi) are also strongly recommended. For patients with inadequate response to csDMARDs, we strongly recommend TNFi, IL-17i, IL-12/23i, IL-23i, and JAKi. For those who had prior experience with bDMARDs, we strongly recommend a second TNFi, IL-17i, IL-23i, and JAKi. The evidence supporting nonpharmacological interventions was very low. An expert panel conditionally recommends adequate physical activity, smoking cessation, and diet to control weight gain. CONCLUSION Evidence supporting optimal therapy for the peripheral arthritis domain of PsA was compiled for the revised 2021 GRAPPA treatment recommendations

    Association between transcatheter aortic valve replacement and subsequent infective endocarditis and in-hospital death

    Get PDF
    Importance Limited data exist on clinical characteristics and outcomes of patients who had infective endocarditis after undergoing transcatheter aortic valve replacement (TAVR). Objective To determine the associated factors, clinical characteristics, and outcomes of patients who had infective endocarditis after TAVR. Design, Setting, and Participants The Infectious Endocarditis after TAVR International Registry included patients with definite infective endocarditis after TAVR from 47 centers from Europe, North America, and South America between June 2005 and October 2015. EXPOSURE Transcatheter aortic valve replacement for incidence of infective endocarditis and infective endocarditis for in-hospital mortality. MAIN OUTCOMES AND MEASURES Infective endocarditis and in-hospital mortality after infective endocarditis. Results A total of 250 cases of infective endocarditis occurred in 20 006 patients after TAVR (incidence, 1.1% per person-year; 95% CI, 1.1%-1.4%; median age, 80 years; 64% men). Median time from TAVR to infective endocarditis was 5.3 months (interquartile range [IQR], 1.5-13.4 months). The characteristics associated with higher risk of progressing to infective endocarditis after TAVR was younger age (78.9 years vs 81.8 years; hazard ratio [HR], 0.97 per year; 95% CI, 0.94-0.99), male sex (62.0% vs 49.7%; HR, 1.69; 95% CI, 1.13-2.52), diabetes mellitus (41.7% vs 30.0%; HR, 1.52; 95% CI, 1.02-2.29), and moderate to severe aortic regurgitation (22.4% vs 14.7%; HR, 2.05; 95% CI, 1.28-3.28). Health care?associated infective endocarditis was present in 52.8% (95% CI, 46.6%-59.0%) of patients. Enterococci species and Staphylococcus aureus were the most frequently isolated microorganisms (24.6%; 95% CI, 19.1%-30.1% and 23.3%; 95% CI, 17.9%-28.7%, respectively). The in-hospital mortality rate was 36% (95% CI, 30.0%-41.9%; 90 deaths; 160 survivors), and surgery was performed in 14.8% (95% CI, 10.4%-19.2%) of patients during the infective endocarditis episode. In-hospital mortality was associated with a higher logistic EuroSCORE (23.1% vs 18.6%; odds ratio [OR], 1.03 per 1% increase; 95% CI, 1.00-1.05), heart failure (59.3% vs 23.7%; OR, 3.36; 95% CI, 1.74-6.45), and acute kidney injury (67.4% vs 31.6%; OR, 2.70; 95% CI, 1.42-5.11). The 2-year mortality rate was 66.7% (95% CI, 59.0%-74.2%; 132 deaths; 115 survivors). Conclusions and Relevance Among patients undergoing TAVR, younger age, male sex, history of diabetes mellitus, and moderate to severe residual aortic regurgitation were significantly associated with an increased risk of infective endocarditis. Patients who developed endocarditis had high rates of in-hospital mortality and 2-year mortalit

    C. Literaturwissenschaft.

    No full text

    Infective Endocarditis After Transcatheter Versus Surgical Aortic Valve Replacement

    No full text
    Abstract Background Scarce data are available comparing infective endocarditis (IE) following surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR). This study aimed to compare the clinical presentation, microbiological profile, management, and outcomes of IE after SAVR versus TAVR. Methods Data were collected from the “Infectious Endocarditis after TAVR International” (enrollment from 2005 to 2020) and the “International Collaboration on Endocarditis” (enrollment from 2000 to 2012) registries. Only patients with an IE affecting the aortic valve prosthesis were included. A 1:1 paired matching approach was used to compare patients with TAVR and SAVR. Results A total of 1688 patients were included. Of them, 602 (35.7%) had a surgical bioprosthesis (SB), 666 (39.5%) a mechanical prosthesis, 70 (4.2%) a homograft, and 350 (20.7%) a transcatheter heart valve. In the SAVR versus TAVR matched population, the rate of new moderate or severe aortic regurgitation was higher in the SB group (43.4% vs 13.5%; P < .001), and fewer vegetations were diagnosed in the SB group (62.5% vs 82%; P < .001). Patients with an SB had a higher rate of perivalvular extension (47.9% vs 27%; P < .001) and Staphylococcus aureus was less common in this group (13.4% vs 22%; P = .033). Despite a higher rate of surgery in patients with SB (44.4% vs 27.3%; P < .001), 1-year mortality was similar (SB: 46.5%; TAVR: 44.8%; log-rank P = .697). Conclusions Clinical presentation, type of causative microorganism, and treatment differed between patients with an IE located on SB compared with TAVR. Despite these differences, both groups exhibited high and similar mortality at 1-year follow-up

    Delayed colorectal cancer care during covid-19 pandemic (decor-19). Global perspective from an international survey

    No full text
    Background The widespread nature of coronavirus disease 2019 (COVID-19) has been unprecedented. We sought to analyze its global impact with a survey on colorectal cancer (CRC) care during the pandemic. Methods The impact of COVID-19 on preoperative assessment, elective surgery, and postoperative management of CRC patients was explored by a 35-item survey, which was distributed worldwide to members of surgical societies with an interest in CRC care. Respondents were divided into two comparator groups: 1) ‘delay’ group: CRC care affected by the pandemic; 2) ‘no delay’ group: unaltered CRC practice. Results A total of 1,051 respondents from 84 countries completed the survey. No substantial differences in demographics were found between the ‘delay’ (745, 70.9%) and ‘no delay’ (306, 29.1%) groups. Suspension of multidisciplinary team meetings, staff members quarantined or relocated to COVID-19 units, units fully dedicated to COVID-19 care, personal protective equipment not readily available were factors significantly associated to delays in endoscopy, radiology, surgery, histopathology and prolonged chemoradiation therapy-to-surgery intervals. In the ‘delay’ group, 48.9% of respondents reported a change in the initial surgical plan and 26.3% reported a shift from elective to urgent operations. Recovery of CRC care was associated with the status of the outbreak. Practicing in COVID-free units, no change in operative slots and staff members not relocated to COVID-19 units were statistically associated with unaltered CRC care in the ‘no delay’ group, while the geographical distribution was not. Conclusions Global changes in diagnostic and therapeutic CRC practices were evident. Changes were associated with differences in health-care delivery systems, hospital’s preparedness, resources availability, and local COVID-19 prevalence rather than geographical factors. Strategic planning is required to optimize CRC care
    corecore