36 research outputs found

    Connecting Bullying and School Drop Out

    Get PDF
    *

    Fostering Emotionally Intelligent Bullying Prevention through Youth Engagement

    Get PDF
    School staff play an important role in preventing bullying, but they can’t do it alone. Schools must meet the social-emotional needs of students for bullying to decrease and these efforts are more successful when youth are involved. This session will explore engaging youth by promoting youth voice, changing social norms, and using class meetings to teach social-emotional learning skills

    Bullying Panel

    Get PDF
    This panel is set to push the boundaries of typical bullying prevention and propose fresh ideas for solutions in schools. Bullying prevention is one of the most pressing topics in education today. With many instances of school violence linked to bullying, schools are actively seeking practical solutions that can curtail this epidemic

    Incorporating a canopy parameterization within a coupled fire-atmosphere model to improve a smoke simulation for a prescribed burn

    Get PDF
    Forecasting fire growth, plume rise and smoke impacts on air quality remains a challenging task. Wildland fires dynamically interact with the atmosphere, which can impact fire behavior, plume rises, and smoke dispersion. For understory fires, the fire propagation is driven by winds attenuated by the forest canopy. However, most numerical weather prediction models providing meteorological forcing for fire models are unable to resolve canopy winds. In this study, an improved canopy model parameterization was implemented within a coupled fire-atmosphere model (WRF-SFIRE) to simulate a prescribed burn within a forested plot. Simulations with and without a canopy wind model were generated to determine the sensitivity of fire growth, plume rise, and smoke dispersion to canopy effects on near-surface wind flow. Results presented here found strong linkages between the simulated fire rate of spread, heat release and smoke plume evolution. The standard WRF-SFIRE configuration, which uses a logarithmic interpolation to estimate sub-canopy winds, overestimated wind speeds (by a factor 2), fire growth rates and plume rise heights. WRF-SFIRE simulations that implemented a canopy model based on a non-dimensional wind profile, saw significant improvements in sub-canopy winds, fire growth rates and smoke dispersion when evaluated with observations

    Liquid crystals in micron-scale droplets, shells and fibers

    Get PDF
    peer reviewedThe extraordinary responsiveness and large diversity of self-assembled structures of liquid crystals are well documented and they have been extensively used in devices like displays. For long, this application route strongly influenced academic research, which frequently focused on the performance of liquid crystals in display-like geometries, typically between flat, rigid substrates of glass or similar solids. Today a new trend is clearly visible, where liquid crystals confined within curved, often soft and flexible, interfaces are in focus. Innovation in microfluidic technology has opened for high-throughput production of liquid crystal droplets or shells with exquisite monodispersity, and modern characterization methods allow detailed analysis of complex director arrangements. The introduction of electrospinning in liquid crystal research has enabled encapsulation in optically transparent polymeric cylinders with very small radius, allowing studies of confinement effects that were not easily accessible before. It also opened the prospect of functionalizing textile fibers with liquid crystals in the core, triggering activities that target wearable devices with true textile form factor for seamless integration in clothing. Together, these developments have brought issues center stage that might previously have been considered esoteric, like the interaction of topological defects on spherical surfaces, saddle-splay curvature-induced spontaneous chiral symmetry breaking, or the non-trivial shape changes of curved liquid crystal elastomers with non-uniform director fields that undergo a phase transition to an isotropic state. The new research thrusts are motivated equally by the intriguing soft matter physics showcased by liquid crystals in these unconventional geometries, and by the many novel application opportunities that arise when we can reproducibly manufacture these systems on a commercial scale. This review attempts to summarize the current understanding of liquid crystals in spherical and cylindrical geometry, the state of the art of producing such samples, as well as the perspectives for innovative applications that have been put forward.R-AGR-0505 - IRP15 - UNIQUE (20150401-20180331) - LAGERWALL Ja

    Norms of public argumentation and the ideals of correctness and participation

    Get PDF
    Argumentation as the public exchange of reasons is widely thought to enhance deliberative interactions that generate and justify reasonable public policies. Adopting an argumentation-theoretic perspective, we survey the norms that should govern public argumentation and address some of the complexities that scholarly treatments have identified. Our focus is on norms associated with the ideals of correctness and participation as sources of a politically legitimate deliberative outcome. In principle, both ideals are mutually coherent. If the information needed for a correct deliberative outcome is distributed among agents, then maximising participation increases information diversity. But both ideals can also be in tension. If participants lack competence or are prone to biases, a correct deliberative outcome requires limiting participation. The central question for public argumentation, therefore, is how to strike a balance between both ideals. Rather than advocating a preferred normative framework, our main purpose is to illustrate the complexity of this theme

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Get PDF
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.Peer reviewe

    Why organically functionalized nanoparticles increase the electrical conductivity of nematic liquid crystal dispersions

    No full text
    Doping liquid crystals with gold nanoparticles increases the conductivity by up to three orders of magnitude, an increase even stronger than expected for equimolar amounts of organic electrolytes. Despite recent high activity in the field of liquid crystalline nanocomposites, the origin of this increase has rarely been addressed and is not well understood. In this dielectric spectroscopy study we discuss the origin of the increased conductivity and identify its source. We demonstrate that the hydrodynamic radius of the mobile charge carrier species in nanoparticle dispersions is significantly smaller than the 3–5 nm gold core, which rules out the particles themselves to be the source of conductivity. Likewise, also the ligand molecules from the organic capping layer do not themselves add to the conductivity of the dispersions, but affect the electrical properties by acting as a trap for ionic impurities. We suggest that the partial release of these impurities upon interactions of the ligand shell with the uniaxial nematic host phase is the most likely source for the increased conductivity. Our study opens a new perspective on synthesis strategies for functionalized nanoparticles and will help to overcome the current issues preventing high-performing liquid crystal nanodispersions
    corecore