557 research outputs found

    The Effects of Hydrostatic Pressure on Early Endothelial Tubulogenic Processes

    Get PDF
    The effects of mechanical forces on endothelial cell function and behavior are well documented, but have not been fully characterized. Specifically, fluid pressure has been shown to elicit physical and chemical responses known to be involved in the initiation and progression of endothelial cell-mediated vascularization. Central to the process of vascularization is the formation of tube-like structures. This process—tubulogenesis—is essential to both the physiological and pathological growth of tissues. Given the known effects of pressure on endothelial cells and its ubiquitous presence in the vasculature, we investigated pressure as a magnitude-dependent parameter for the regulation of endothelial tubulogenic activity. To accomplish this, we exposed two- and three-dimensional bovine aortic endothelial cell (BAEC) cultures to static pressures of 0, 20, and 40 mmHg for 3 and 4 days. The most significant findings were: (1) cells in two-dimensional culture exposed to 20, but not 40, mmHg exhibited significantly (p \u3c 0.05) increased expression of both VEGF-C and VEGFR-3, and (2) cells in three-dimensional culture exposed to 20, but not 40, mmHg exhibited significant (p \u3e 0.05) increases in endothelial sprouting. These findings evidence the utility of pressure as a selective modulator of tissue microvascularization in vitro and implicates pressure as factor in pathological tubulogenesis in vivo

    An Open Framework for Highly Concurrent Real-Time Hardware-in-the-Loop Simulation

    Get PDF
    Hardware-in-the-loop (HIL) real-time simulation is becoming a significant tool in prototyping complex, highly available systems. The HIL approach permits testing of hardware prototypes of components that would be extremely costly or difficult to test in the deployed environment. In power system simulation, key issues are the ability to wrap the systems of equations (such as Partial Differential Equations) describing the deployed environment into real-time software models, provide low synchronization overhead between the hardware and software, and reduce reliance on proprietary platforms. This paper introduces an open source HIL simulation framework that can be ported to any standard Unix-like system on any shared-memory multiprocessor computer, requires minimal operating system scheduler controls, enables an asynchronous user interface, and allows for an arbitrary number of secondary control components. The framework is implemented in a soft real-time HIL simulation of a power transmission network with physical Flexible AC Transmission System (FACTS) devices. Performance results are given that demonstrate a low synchronization overhead of the framework

    AMTEC vapor-vapor series connected cells

    Get PDF
    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current

    Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of \u3ci\u3eBifidobacterium\u3c/i\u3e over the Past Century

    Get PDF
    Historically, Bifidobacterium species were reported as abundant in the breastfed infant gut. However, recent studies in resource-rich countries show an increased abundance of taxa regarded as signatures of dysbiosis. It is unclear whether these differences are the product of genetics, geographic factors, or interventions such as formula feeding, antibiotics, and caesarean section. Fecal pH is strongly associated with Bifidobacterium abundance; thus, pH could be an indicator of its historical abundance. A review of 14 clinical studies published between 1926 and 2017, representing more than 312 healthy breastfed infants, demonstrated a change in fecal pH from 5.0 to 6.5 (adjusted r2 = 0.61). This trend of increasing infant fecal pH over the past century is consistent with current reported discrepancies in Bifidobacterium species abundance in the gut microbiome in resource-rich countries compared to that in historical reports. Our analysis showed that increased fecal pH and abundance of members of the families Enterobacteriaceae, Clostridiaceae, Peptostreptococcaceae, and Veillonellaceae are associated, indicating that loss of highly specialized Bifidobacterium species may result in dysbiosis, the implications of which are not yet fully elucidated. Critical assessment of interventions that restore this ecosystem, measured by key parameters such as ecosystem productivity, gut function, and long-term health, are necessary to understand the magnitude of this change in human biology over the past century

    Evaluating the extent of a large-scale transformation in gateway science courses

    Get PDF
    We evaluate the impact of an institutional effort to transform undergraduate science courses using an approach based on course assessments. The approach is guided by A Framework for K-12 Science Education and focuses on scientific and engineering practices, crosscutting concepts, and core ideas, together called three-dimensional learning. To evaluate the extent of change, we applied the Three-dimensional Learning Assessment Protocol to 4 years of chemistry, physics, and biology course exams. Changes in exams differed by discipline and even by course, apparently depending on an interplay between departmental culture, course organization, and perceived course ownership, demonstrating the complex nature of transformation in higher education. We conclude that while transformation must be supported at all organizational levels, ultimately, change is controlled by factors at the course and departmental levels

    Characterizing college science instruction: The Three-Dimensional Learning Observation Protocol

    Get PDF
    The importance of improving STEM education is of perennial interest, and to this end, the education community needs ways to characterize transformation efforts. Three-dimensional learning (3DL) is one such approach to transformation, in which core ideas of the discipline, scientific practices, and crosscutting concepts are combined to support student development of disciplinary expertise. We have previously reported on an approach to the characterization of assessments, the Three-Dimensional Learning Assessment Protocol (3D-LAP), that can be used to identify whether assessments have the potential to engage students in 3DL. Here we present the development of a companion, the Three-Dimensional Learning Observation Protocol (3D-LOP), an observation protocol that can reliably distinguish between instruction that has potential for engagement with 3DL and instruction that does not. The 3D-LOP goes beyond other observation protocols, because it is intended not only to characterize the pedagogical approaches being used in the instructional environment, but also to identify whether students are being asked to engage with scientific practices, core ideas, and crosscutting concepts. We demonstrate herein that the 3D-LOP can be used reliably to code for the presence of 3DL; further, we present data that show the utility of the 3D-LOP in differentiating between instruction that has the potential to promote 3DL from instruction that does not. Our team plans to continue using this protocol to evaluate outcomes of instructional transformation projects. We also propose that the 3D-LOP can be used to support practitioners in developing curricular materials and selecting instructional strategies to promote engagement in three-dimensional instruction

    Synthesis and activity of a novel Autotaxin inhibitor-Icodextrin conjugate

    Get PDF
    Š Copyright 2018 American Chemical Society. Autotaxin is an extracellular phospholipase D that catalyses the hydrolysis of lysophosphatidyl choline (LPC) to generate the bioactive lipid lysophosphatidic acid (LPA). Autotaxin has been implicated in many pathological processes relevant to cancer. Intraperitoneal administration of an autotaxin inhibitor may benefit patients with ovarian cancer, however low molecular mass compounds are known to be rapidly cleared from the peritoneal cavity. Icodextrin is a polymer that is already in clinical use because it is slowly eliminated from the peritoneal cavity. Herein we report conjugation of the autotaxin inhibitor HA-155 to icodextrin. The conjugate inhibits autotaxin activity (IC50 = 0.86 ¹ 0.13 Οg mL-1) and reduces cell migration. Conjugation of the inhibitor increased its solubility, decreased its membrane permeability and improved its intraperitoneal retention in mice. These observations demonstrate the first application of icodextrin as a covalently-bonded drug delivery platform with potential use in the treatment of ovarian cancer

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex nding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011
    • …
    corecore