69 research outputs found

    Technical analysis: Novel insights on contrarian trading

    Full text link
    We analyze the predictive power of technical analysis with a novel data set based on news sentiment that allows to systematically examine a set of technical analysis indicators over an extensive time period. We do not find much statistically significant relationships with the examined indicators and future asset returns, and we almost do not find any alphas in trading strategies based on technical analysis sentiment. We find evidence for a contrarian-based hypothesis: past market returns and technical analysis sentiment are able to predict future technical analysis sentiment with a negative relationship

    Revealing the Structural Evolution of Electrode/Electrolyte Interphase Formation during Magnesium Plating and Stripping with operando EQCM‐D

    Get PDF
    Rechargeable magnesium batteries could provide future energy storage systems with high energy density. One remaining challenge is the development of electrolytes compatible with the negative Mg electrode, enabling uniform plating and stripping with high Coulombic efficiencies. Often improvements are hindered by a lack of fundamental understanding of processes occurring during cycling, as well as the existence and structure of a formed interphase layer at the electrode/electrolyte interface. Here, a magnesium model electrolyte based on magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2_2) and MgCl2_2 with a borohydride as additive, dissolved in dimethoxyethane (DME), was used to investigate the initial galvanostatic plating and stripping cycles operando using electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). We show that side reactions lead to the formation of an interphase of irreversibly deposited Mg during the initial cycles. EQCM-D based hydrodynamic spectroscopy reveals the growth of a porous layer during Mg stripping. After the first cycles, the interphase layer is in a dynamic equilibrium between the formation of the layer and its dissolution, resulting in a stable thickness upon further cycling. This study provides operando information of the interphase formation, its changes during cycling and the dynamic behavior, helping to rationally develop future electrolytes and electrode/electrolyte interfaces and interphases

    Combining Deep Eutectic Solvents with TEMPO‐based Polymer Electrodes: Influence of Molar Ratio on Electrode Performance

    Get PDF
    For sustainable energy storage, all-organic batteries based on redox-active polymers promise to become an alternative to lithium ion batteries. Yet, polymers contribute to the goal of an all-organic cell as electrodes or as solid electrolytes. Here, we replace the electrolyte with a deep eutectic solvent (DES) composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) and N-methylacetamide (NMA), while using poly(2,2,6,6-tetramethylpiperidin-1-yl-oxyl methacrylate) (PTMA) as cathode. The successful combination of a DES with a polymer electrode is reported here for the first time. The electrochemical stability of PTMA electrodes in the DES at the eutectic molar ratio of 1 : 6 is comparable to conventional battery electrolytes. More viscous electrolytes with higher salt concentration can hinder cycling at high rates. Lower salt concentration leads to decreasing capacities and faster decomposition. The eutectic mixture of 1 : 6 is best suited uniting high stability and moderate viscosity

    Influence of Chloride and Nitrate Anions on Copper Electrodeposition onto Au(111) from Deep Eutectic Solvents

    Get PDF
    Copper electrodeposition on Au(111) from deep eutectic solvents (DESs) type III was investigated employing cyclic voltammetry as well as chronoamperometry. It was further examined on Au(poly) using the electrochemical quartz crystal microbalance (EQCM). The employed DESs are mixtures of choline chloride (ChCl) or choline nitrate (ChNO3_{3}) with ethylene glycol (EG) as hydrogen bond donor (HBD), each in a molar ratio of 1 : 2. CuCl, CuCl2_{2}, or Cu(NO3_{3})2_{2} ⋅ 3H2_{2}O were added as copper sources. Underpotential deposition (UPD) of Cu precedes bulk deposition in chloride as well as nitrate electrolytes. Cu deposition from Cu+^{+} in chloride media is observed as a one-electron reaction, whereas deposition from Cu2+^{2+} occurs in two steps since Cu+^{+} is strongly stabilized by chloride. Cu+^{+} is less stabilized by nitrate and the beginning of bulk deposition in the nitrate-containing DES with Cu2+^{2+} is shifted by several hundred mV to more positive potentials compared to the chloride DES. A diffusion-controlled, three-dimensional nucleation and growth mechanism is found by chronoamperometric measurements and analysis based on the model of Scharifker and Mostany

    All‐Organic Battery Based on Deep Eutectic Solvent and Redox‐Active Polymers

    Get PDF
    Sustainable battery concepts are of great importance for the energy storage demands of the future. Organic batteries based on redox-active polymers are one class of promising storage systems to meet these demands, in particular when combined with environmentally friendly and safe electrolytes. Deep Eutectic Solvents (DESs) represent a class of electrolytes that can be produced from sustainable sources and exhibit in most cases no or only a small environmental impact. Because of their non-flammability, DESs are safe, while providing an electrochemical stability window almost comparable to established battery electrolytes and much broader than typical aqueous electrolytes. Here, we report the first all-organic battery cell based on a DES electrolyte, which in this case is composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) and N-methylacetamide (NMA) alongside the electrode active materials poly(2,2,6,6-tetramethylpiperidin-1-yl-oxyl methacrylate) (PTMA) and crosslinked poly(vinylbenzylviologen) (X-PVBV2+^{2+}). The resulting cell shows two voltage plateaus at 1.07 V and 1.58 V and achieves Coulombic efficiencies of 98 %. Surprisingly, the X-PVBV/X-PVBV+^+ redox couple turned out to be much more stable in NaTFSI : NMA 1 : 6 than the X-PVBV+^+/X-PVBV2+^{2+} couple, leading to asymmetric capacity fading during cycling tests

    Sarcoma classification by DNA methylation profiling

    Get PDF
    Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore