9 research outputs found

    Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory

    Get PDF
    Lithologic differences give rise to the differential weatherability of the Earth’s surface and globally variable silicate weathering fluxes, which provide an important negative feedback on climate over geologic timescales. To isolate the influence of lithology on weathering rates and mechanisms, we compare two nearby catchments in the Luquillo Critical Zone Observatory in Puerto Rico, which have similar climate history, relief and vegetation, but differ in bedrock lithology. Regolith and pore water samples with depth were collected from two ridgetops and at three sites along a slope transect in the volcaniclastic Bisley catchment and compared to existing data from the granitic Río Icacos catchment. The depth variations of solid-state and pore water chemistry and quantitative mineralogy were used to calculate mass transfer (tau) and weathering solute profiles, which in turn were used to determine weathering mechanisms and to estimate weathering rates. Regolith formed on both lithologies is highly leached of most labile elements, although Mg and K are less depleted in the granitic than in the volcaniclastic profiles, reflecting residual biotite in the granitic regolith not present in the volcaniclastics. Profiles of both lithologies that terminate at bedrock corestones are less weathered at depth, near the rock-regolith interfaces. Mg fluxes in the volcaniclastics derive primarily from dissolution of chlorite near the rock-regolith interface and from dissolution of illite and secondary phases in the upper regolith, whereas in the granitic profile, Mg and K fluxes derive from biotite dissolution. Long-term mineral dissolution rates and weathering fluxes were determined by integrating mass losses over the thickness of solid-state weathering fronts, and are therefore averages over the timescale of regolith development. Resulting long-term dissolution rates for minerals in the volcaniclastic regolith include chlorite: 8.9 × 10‾¹⁴ mol m‾² s‾¹, illite: 2.1 × 10‾¹⁴ mol m‾² s‾¹ and kaolinite: 4.0 × 10‾¹⁴ mol m‾² s‾¹. Long-term weathering fluxes are several orders of magnitude lower in the granitic regolith than in the volcaniclastic, despite higher abundances of several elements in the granitic regolith. Contemporary weathering fluxes were determined from net (rain-corrected) solute profiles and thus represent rates over the residence time of water in the regolith. Contemporary weathering fluxes within the granitic regolith are similar to the long-term fluxes. In contrast, the long-term fluxes are faster than the contemporary fluxes in the volcaniclastic regolith. Contemporary fluxes in the granitic regolith are generally also slightly faster than in the volcaniclastic. The differences in weathering fluxes over space and time between these two watersheds indicate significant lithologic control of chemical weathering mechanisms and rates

    Invasive plants as catalysts for the spread of human parasites

    Get PDF
    As serious as are the consequences of invasive species that directly cause human afflictions through their production of lethal protease inhibitors (Bryonia alba), allergens (Parthenium hysterophorus) or furanocoumarins (Hercaleum mantegazzianum), other introduced species may cause even greater risks to human health by enhancing the proliferation of vectors of virulent human parasites. The dense, floating mats of Eichhornia crassipes (water hyacinth) create habitat for larvae of the dipteran vectors of Plasmodium spp., the causative agents of malaria, and other parasites. Facilitation of a human parasite is not restricted to aquatic systems. In Africa, the tropical American shrub Lantana camara (lantana) provides essential habitat for dipteran vectors (Glossina spp.) of protozoans (Trypanosoma spp.) that cause trypanosomiasis. Unanticipated health consequences will likely continue to emerge from new plant introductions. Sin Nombre Virus (SNV) is a rodent-borne parasite that causes Hantavirus Pulmonary Syndrome, an often-lethal disease in humans. Populations of rodent vectors of SNV in South America increase rapidly in response to synchronous fruit availability among masting, native bamboos. With depletion of this temporary food source, the rodents seek food near human settlements, increasing the risk of human infections with SNV. In the United States the omnivorous deer mouse Peromyscus maniculatus is also a SNV carrier. The escape of Asian cold-tolerant bamboos from cultivation raises the possibility of invasions (several have already become naturalized) and providing a temporary boost to populations of infected native rodents. Proposed introductions of aquatic vascular species, species with masting reproduction and those that would occupy an unfilled niche in the proposed new range deserve careful evaluation for their possible roles as unforeseen catalysts of species interactions, especially of human parasites
    corecore