67 research outputs found

    White Organic Light Emitting Diodes Via Complementary Color Mixing Approach Through Multilayer Device Architecture

    Get PDF
    105-110White organic light emitting diodes (WOLEDs) are emerging as potential light emitting technology and have found many applications from back light for liquid crystal displays to next generation displays and solid-state lighting. We report here the fabrication of organic light emitting diodes (OLEDs), which emit white light via multilayer color approach. These WOLEDs incorporated the materials emitting two complementary colors greenish-blue and reddish-orange to make white. The amount of light emitted from each layer was chosen in such a way that the mixture of the two emitted lights gave white light. The amount of light emitted from each layer was controlled by taking optimum thickness of each layer and incorporating a thin hole blocking layer of BCP in between the emissive layers. For greenish-blue light, we used a phosphorescent dopant FIrPic whereas for reddish-orange light we used the phosphorescent dopant Ir(btp)2(acac) and both of these dopants were doped in the host CBP. We studied the effect of operating voltage on the color of the emitted light of these WOLEDs and found that the color of the emitted light was almost independent of operating voltage. The WOLEDs emitted 1600 cd/m2 at 15 V with Commission Internationale de I’Eclairage (CIE) coordinates (0.25, 0.32). We also studied the current density vs voltage (J-V) and voltage vs luminescence (V-L) characteristics of these devices and calculated their efficiency which was found to be 0.35 cd/A. We also prepared some WOLEDs based numeric displays just of the demonstration purpose

    Efficient Green Phosphorescent Organic Light Emitting Diode using Iridium Complex

    Get PDF
    415-421We report here the fabrication and characterization of an efficient green phosphorescent organic light emitting diodes (PhOLED) using phosphorescent iridium complex, tris(2-phenylpyridine) iridium (III) (Ir(ppy)3). Ir(ppy)3 is an organic phosphorescent material, which emits green light via both the singlet as well as triplet exciton relaxation. To avoid triplettriplet annihilation and for efficient light emission, the phosphorescent emitters should be doped in a suitable host material which has band-gap larger than the doped guest material and the band gap of the guest should lie within the band-gap of the host. We optimally doped phosphorescent Ir(ppy)3 into a fluorescent 4,4'-bis(9-carbazolyl) biphenyl (CBP) host and used it as the emitter to prepare PhOLEDs. The PhOLED exhibited green electroluminescence (EL) in the range ~ 480-650 nm with EL peak at 550 nm along with a shoulder at 510 nm. The Commission Internationale de-I’eclairage (CIE) colour coordinate of the device was measured to be (0.25, 0.60). The current density vs voltage vs luminescence (J-V-L) characteristics of the device led us to calculate its current efficiency, which was found to be 28.9 cd/A at 7V. The efficiency of PhOLED decreased with increment in the applied voltage beyond 7 V and has been attributed to the triplet-triplet annihilation due to high injected current densities

    Determination of Electron Mobility in Small Molecular1,4-di(bis(8-hydroxyquinoline)aluminum-oxy)benzene by Transient Electroluminescence

    Get PDF
    Transient electroluminescence is an important tool to determine the charge carrier dynamics in light emitting organic semiconductors. We have used this method to determine the electron mobility in one of the important organic semiconductors 1,4-di(bis(8-hydroxyquinoline)aluminum-oxy)benzene (Alq(1)), used as emissive layer in organic light emitting diodes (OLEDs). For transient electroluminescence studies, we prepared OLEDs using Alq(1) as the emitter. The OLEDs were prepared on indium tin oxide (ITO) coated glass substrates using N, N’-diphenyl -N,N’- bis (3-methylphenyl)-(1,1’-biphenyl)-4,4- diamine (TPD) as hole transport layer (HTL) and lithium fluoride (LiF) as electron injecting buffer layer. The temporal evaluation of the electroluminescence (EL) was studies with respect to a voltage pulse of different amplitudes applied to the device at different temperatures. A delay was observed in the onset of EL from the device with respect to the applied voltage pulse. The EL exhibited a fast initial rise followed by tending to saturate. The EL decayed rapidly as the applied voltage became zero and the decay did not depend upon the amplitude of the applied voltage pulse. The delay time in the onset of EL with respect to the applied voltage pulse is correlated to the electron mobility in Alq(1). The electron mobility in Alq(1) calculated by transient EL method, showed strong dependency on the applied electric field and temperature at low electric fields however at quite high electric fields, the electron mobility in Alq(1) showed poor dependency on the applied electric field and temperature. This behavior of electron mobility in Alq(1) has been explained in terms of shallow charge carrier traps in Alq(1) film. The electron mobility in Alq(1) at 295 K and 2.7´106 V/cm, has been determined to be 5.4´10-6 cm2V-1s-1, which is much higher than that in the well-studied Alq3

    MIRO-1 Determines Mitochondrial Shape Transition upon GPCR Activation and Ca^(2+) Stress

    Get PDF
    Mitochondria shape cytosolic calcium ([Ca^(2+)]_c) transients and utilize the mitochondrial Ca_2^+ ([Ca^(2+)]_m) in exchange for bioenergetics output. Conversely, dysregulated [Ca^(2+)]_c causes [Ca^(2+)]_m overload and induces permeability transition pore and cell death. Ablation of MCU-mediated Ca^(2+) uptake exhibited elevated [Ca^(2+)]_c and failed to prevent stress-induced cell death. The mechanisms for these effects remain elusive. Here, we report that mitochondria undergo a cytosolic Ca^(2+)-induced shape change that is distinct from mitochondrial fission and swelling. [Ca^(2+)]_c elevation, but not MCU-mediated Ca^(2+) uptake, appears to be essential for the process we term mitochondrial shape transition (MiST). MiST is mediated by the mitochondrial protein Miro1 through its EF-hand domain 1 in multiple cell types. Moreover, Ca^(2+)-dependent disruption of Miro1/KIF5B/tubulin complex is determined by Miro1 EF1 domain. Functionally, Miro1-dependent MiST is essential for autophagy/mitophagy that is attenuated in Miro1 EF1 mutants. Thus, Miro1 is a cytosolic Ca^(2+) sensor that decodes metazoan Ca^(2+) signals as MiST

    MIRO-1 Determines Mitochondrial Shape Transition upon GPCR Activation and Ca^(2+) Stress

    Get PDF
    Mitochondria shape cytosolic calcium ([Ca^(2+)]_c) transients and utilize the mitochondrial Ca_2^+ ([Ca^(2+)]_m) in exchange for bioenergetics output. Conversely, dysregulated [Ca^(2+)]_c causes [Ca^(2+)]_m overload and induces permeability transition pore and cell death. Ablation of MCU-mediated Ca^(2+) uptake exhibited elevated [Ca^(2+)]_c and failed to prevent stress-induced cell death. The mechanisms for these effects remain elusive. Here, we report that mitochondria undergo a cytosolic Ca^(2+)-induced shape change that is distinct from mitochondrial fission and swelling. [Ca^(2+)]_c elevation, but not MCU-mediated Ca^(2+) uptake, appears to be essential for the process we term mitochondrial shape transition (MiST). MiST is mediated by the mitochondrial protein Miro1 through its EF-hand domain 1 in multiple cell types. Moreover, Ca^(2+)-dependent disruption of Miro1/KIF5B/tubulin complex is determined by Miro1 EF1 domain. Functionally, Miro1-dependent MiST is essential for autophagy/mitophagy that is attenuated in Miro1 EF1 mutants. Thus, Miro1 is a cytosolic Ca^(2+) sensor that decodes metazoan Ca^(2+) signals as MiST

    Pharmacological effects of Sapindus mukorossi

    Get PDF
    Sapindus mukorossi is an extremely valuable medicinal plant, distributed in tropical and sub-tropical regions of Asia. The aim of present review is to form a short compilation of the phytochemical composition and pharmacological properties of this multipurpose tree. The main phytoconstituents isolated and identified from different parts of this plant are triterpenoidal saponins of oleanane, dammarane and tirucullane type. The structure and chemical names of all the types of triterpenoidal saponins reported in Sapindus mukorossi are included in this review. Many research studies have been conducted to prove the plant's potential as being spermicidal, contraceptive, hepatoprotective, emetic, anti-inflammatory and anti-protozoal. The present review highlights some of the salient pharmacological uses of Sapindus mukorossi

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    Developing Standard Treatment Workflows—way to universal healthcare in India

    Get PDF
    Primary healthcare caters to nearly 70% of the population in India and provides treatment for approximately 80–90% of common conditions. To achieve universal health coverage (UHC), the Indian healthcare system is gearing up by initiating several schemes such as National Health Protection Scheme, Ayushman Bharat, Nutrition Supplementation Schemes, and Inderdhanush Schemes. The healthcare delivery system is facing challenges such as irrational use of medicines, over- and under-diagnosis, high out-of-pocket expenditure, lack of targeted attention to preventive and promotive health services, and poor referral mechanisms. Healthcare providers are unable to keep pace with the volume of growing new scientific evidence and rising healthcare costs as the literature is not published at the same pace. In addition, there is a lack of common standard treatment guidelines, workflows, and reference manuals from the Government of India. Indian Council of Medical Research in collaboration with the National Health Authority, Govt. of India, and the WHO India country office has developed Standard Treatment Workflows (STWs) with the objective to be utilized at various levels of healthcare starting from primary to tertiary level care. A systematic approach was adopted to formulate the STWs. An advisory committee was constituted for planning and oversight of the process. Specialty experts' group for each specialty comprised of clinicians working at government and private medical colleges and hospitals. The expert groups prioritized the topics through extensive literature searches and meeting with different stakeholders. Then, the contents of each STW were finalized in the form of single-pager infographics. These STWs were further reviewed by an editorial committee before publication. Presently, 125 STWs pertaining to 23 specialties have been developed. It needs to be ensured that STWs are implemented effectively at all levels and ensure quality healthcare at an affordable cost as part of UHC
    corecore