327 research outputs found

    The Structure of the {\beta} Leonis Debris Disk

    Get PDF
    We combine nulling interferometry at 10 {\mu}m using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {\mu}m using Spitzer to study the debris disk around {\beta} Leo over a broad range of spatial scales, corresponding to radii of 0.1 to ~100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The {\beta} Leo debris system has a complex structure: 1.) relatively little material within 1 AU; 2.) an inner component with a color temperature of ~600 K, fitted by a dusty ring from about 2 to 3 AU; and 3.) a second component with a color temperature of ~120 K fitted by a broad dusty emission zone extending from about ~5 AU to ~55 AU. Unlike many other A-type stars with debris disks, {\beta} Leo lacks a dominant outer belt near 100 AU.Comment: 14 page body, 3 page appendix, 15 figure

    HST and Spitzer Observations of the HD 207129 Debris Ring

    Get PDF
    A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in scattered visible light with the ACS coronagraph on the Hubble Space Telescope and in thermal emission using MIPS on the Spitzer Space Telescope at 70 microns (resolved) and 160 microns (unresolved). Spitzer IRS (7-35 microns) and MIPS (55-90 microns) spectrographs measured disk emission at >28 microns. In the HST image the disk appears as a ~30 AU wide ring with a mean radius of ~163 AU and is inclined by 60 degrees from pole-on. At 70 microns it appears partially resolved and is elongated in the same direction and with nearly the same size as seen with HST in scattered light. At 0.6 microns the ring shows no significant brightness asymmetry, implying little or no forward scattering by its constituent dust. With a mean surface brightness of V=23.7 mag per square arcsec, it is the faintest disk imaged to date in scattered light.Comment: 28 pages, 8 figure

    Modeling Collisional Cascades In Debris Disks: The Numerical Method

    Full text link
    We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.Comment: 24 pages, 20 figues, Published in Ap

    The spectrum of the recycled PSR J0437-4715 and its white dwarf companion

    Full text link
    We present extensive spectral and photometric observations of the recycled pulsar/white-dwarf binary containing PSR J0437-4715, which we analyzed together with archival X-ray and gamma-ray data, to obtain the complete mid-infrared to gamma-ray spectrum. We first fit each part of the spectrum separately, and then the whole multi-wavelength spectrum. We find that the optical-infrared part of the spectrum is well fit by a cool white dwarf atmosphere model with pure hydrogen composition. The model atmosphere (Teff = 3950pm150K, log g=6.98pm0.15, R_WD=(1.9pm0.2)e9 cm) fits our spectral data remarkably well for the known mass and distance (M=0.25pm0.02Msun, d=156.3pm1.3pc), yielding the white dwarf age (tau=6.0pm0.5Gyr). In the UV, we find a spectral shape consistent with thermal emission from the bulk of the neutron star surface, with surface temperature between 1.25e5 and 3.5e5K. The temperature of the thermal spectrum suggests that some heating mechanism operates throughout the life of the neutron star. The temperature distribution on the neutron star surface is non-uniform. In the X-rays, we confirm the presence of a high-energy tail which is consistent with a continuation of the cut-off power-law component (Gamma=1.56pm0.01, Ecut=1.1pm0.2GeV) that is seen in gamma-rays and perhaps even extends to the near-UV.Comment: 23 pages. To appear in Ap

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde
    • 

    corecore