5 research outputs found

    Exercise-induced ‘browning’ of adipose tissues

    Get PDF
    Global rates of obesity continue to rise and are necessarily the consequence of a long-term imbalance between energy intake and energy expenditure. This is the result of an expansion of adipose tissue due to both the hypertrophy of existing adipocytes and hyperplasia of adipocyte precursors. Exercise elicits numerous physiological benefits on adipose tissue, which are likely to contribute to the associated cardiometabolic benefits. More recently it has been demonstrated that exercise, through a range of mechanisms, induces a phenotypic switch in adipose tissue from energy storing white adipocytes to thermogenic beige adipocytes. This has generated the hypothesis that the process of adipocyte ‘browning’ may partially underlie the improved cardiometabolic health in physically active populations. Interestingly, ‘browning’ also occurs in response to various stressors and could represent an adaptive response. In the context of exercise, it is not clear whether the appearance of beige adipocytes is metabolically beneficial or whether they occur as a transient adaptive process to exercise-induced stresses. The present review discusses the various mechanisms (e.g. fatty acid oxidation during exercise, decreased thermal insulation, stressors and angiogenesis) by which the exercise-induced ‘browning’ process may occur

    Adipose tissue development and the molecular regulation of lipid metabolism

    No full text
    The production of new adipocytes is required to maintain adipose tissue mass and involves the proliferation and differentiation of adipocyte precursor cells (APCs). In this review, we outline new developments in understanding the phenotype of APCs and provide evidence suggesting that APCs differ between distinct adipose tissue depots and are affected by obesity. Post-mitotic mature adipocytes regulate systemic lipid homeostasis by storing and releasing free fatty acids, and also modulate energy balance via the secretion of adipokines. The review highlights recent advances in understanding the cellular and molecular mechanisms regulating adipocyte metabolism, with a particular focus on lipolysis regulation and the involvement of microribonucleic acids (miRNAs)

    Shortcuts to a functional adipose tissue: The role of small non-coding RNAs

    No full text
    corecore