55 research outputs found

    Further evidence for large central mass-to-light ratios in early-type galaxies: the case of ellipticals and lenticulars in the Abell~262 cluster

    Full text link
    We present radially resolved spectroscopy of 8 early-type galaxies in Abell~262, measuring rotation, velocity dispersion, H3H_3 and H4H_4 coefficients along three axes, and line-strength index profiles of Mg, Fe and Hβ\beta. Ionized-gas velocity and velocity dispersion is included for 6 galaxies. We derive dynamical mass-to-light ratios and dark matter densities from orbit-based dynamical models, complemented by the galaxies' ages, metallicities, and α\alpha-elements abundances. Four galaxies have significant dark matter with halos about 10 times denser than in spirals of the same stellar mass. Using dark matter densities and cosmological simulations, assembly redshifts \zdm\approx 1-3, which we found earlier for Coma. The dynamical mass following the light is larger than expected for a Kroupa stellar IMF, especially in galaxies with high velocity dispersion \sigeff inside the effective radius \reff. This could indicate a `massive' IMF in massive galaxies. Alternatively, some dark matter in massive galaxies could follow the light closely. Combining with our comparison sample of Coma early-types, we now have 5 of 24 galaxies where (1) mass follows light to 1-3\,\reff, (2) the dynamical mass-to-light ratio {of all the mass that follows the light is large (810\approx\,8-10 in the Kron-Cousins RR band), (3) the dark matter fraction is negligible to 1-3\,\reff. Unless the IMF in these galaxies is particularly `massive' and somehow coupled to the dark matter content, there seems a significant degeneracy between luminous and dark matter in some early-type galaxies. The role of violent relaxation is briefly discussed.Comment: 62 pages, 13 figures, 8 tables, accepted for publication in A

    The Apparent and Intrinsic Shape of the APM Galaxy Clusters

    Get PDF
    We estimate the distribution of intrinsic shapes of APM galaxy clusters from the distribution of their apparent shapes. We measure the projected cluster ellipticities using two alternative methods. The first method is based on moments of the discrete galaxy distribution while the second is based on moments of the smoothed galaxy distribution. We study the performance of both methods using Monte Carlo cluster simulations covering the range of APM cluster distances and including a random distribution of background galaxies. We find that the first method suffers from severe systematic biases, whereas the second is more reliable. After excluding clusters dominated by substructure and quantifying the systematic biases in our estimated shape parameters, we recover a corrected distribution of projected ellipticities. We use the non-parametric kernel method to estimate the smooth apparent ellipticity distribution, and numerically invert a set of integral equations to recover the corresponding distribution of intrinsic ellipticities under the assumption that the clusters are either oblate or prolate spheroids. The prolate spheroidal model fits the APM cluster data best.Comment: 8 pages, including 7 figures, accepted for publication in MNRA

    Sunyaev-Zel'dovich observations of galaxy clusters out to the virial radius with the Arcminute Microkelvin Imager

    Get PDF
    We present observations using the Small Array of the Arcminute Microkelvin Imager (AMI; 14-18 GHz) of four Abell and three MACS clusters spanning 0.171-0.686 in redshift. We detect Sunyaev-Zel'dovich (SZ) signals in five of these without any attempt at source subtraction, although strong source contamination is present. With radio-source measurements from high-resolution observations, and under the assumptions of spherical β\beta-model, isothermality and hydrostatic equilibrium, a Bayesian analysis of the data in the visibility plane detects extended SZ decrements in all seven clusters over and above receiver noise, radio sources and primary CMB imprints. Bayesian evidence ratios range from 10^{11}:1 to 10^{43}:1 for six of the clusters and 3000:1 for one with substantially less data than the others. We present posterior probability distributions for, e.g., total mass and gas fraction averaged over radii internal to which the mean overdensity is 1000, 500 and 200, r_200 being the virial radius. Reaching r_200 involves some extrapolation for the nearer clusters but not for the more-distant ones. We find that our estimates of gas fraction are low (compared with most in the literature) and decrease with increasing radius. These results appear to be consistent with the notion that gas temperature in fact falls with distance (away from near the cluster centre) out to the virial radius.Comment: 18 pages, 10 figures, submitted to MNRAS (updated authors and fixed Figure 1

    Alignments of Galaxy Group Shapes with Large Scale Structure

    Full text link
    In this paper we analyse the alignment of galaxy groups with the surrounding large scale structure traced by spectroscopic galaxies from the Sloan Digital Sky Survey Data Release 7. We characterise these alignments by means of an extension of the classical two-point cross-correlation function, developed by Paz et al. 2008 (arXiv:0804.4477, MNRAS 389 1127). We find a strong alignment signal between the projected major axis of group shapes and the surrounding galaxy distribution up to scales of 30 Mpc/h. This observed anisotropy signal becomes larger as the galaxy group mass increases, in excellent agreement with the corresponding predicted alignment obtained from mock catalogues and LCDM cosmological simulations. These measurements provide new direct evidence of the adequacy of the gravitational instability picture to describe the large-scale structure formation of our Universe.Comment: 12 pages,7 figures, Accepted for publication in MNRA

    A CI-Independent Form of Replicative Inhibition: Turn Off of Early Replication of Bacteriophage Lambda

    Get PDF
    Several earlier studies have described an unusual exclusion phenotype exhibited by cells with plasmids carrying a portion of the replication region of phage lambda. Cells exhibiting this inhibition phenotype (IP) prevent the plating of homo-immune and hybrid hetero-immune lambdoid phages. We have attempted to define aspects of IP, and show that it is directed to repλ phages. IP was observed in cells with plasmids containing a λ DNA fragment including oop, encoding a short OOP micro RNA, and part of the lambda origin of replication, oriλ, defined by iteron sequences ITN1-4 and an adjacent high AT-rich sequence. Transcription of the intact oop sequence from its promoter, pO is required for IP, as are iterons ITN3–4, but not the high AT-rich portion of oriλ. The results suggest that IP silencing is directed to theta mode replication initiation from an infecting repλ genome, or an induced repλ prophage. Phage mutations suppressing IP, i.e., Sip, map within, or adjacent to cro or in O, or both. Our results for plasmid based IP suggest the hypothesis that there is a natural mechanism for silencing early theta-mode replication initiation, i.e. the buildup of λ genomes with oop+ oriλ+ sequence

    Selection of boron reagents for Suzuki-Miyaura coupling

    Get PDF

    Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes.

    Get PDF
    Abstract BACKGROUND: The cardiovascular effects of adding once-weekly treatment with exenatide to usual care in patients with type 2 diabetes are unknown. METHODS: We randomly assigned patients with type 2 diabetes, with or without previous cardiovascular disease, to receive subcutaneous injections of extended-release exenatide at a dose of 2 mg or matching placebo once weekly. The primary composite outcome was the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. The coprimary hypotheses were that exenatide, administered once weekly, would be noninferior to placebo with respect to safety and superior to placebo with respect to efficacy. RESULTS: In all, 14,752 patients (of whom 10,782 [73.1%] had previous cardiovascular disease) were followed for a median of 3.2 years (interquartile range, 2.2 to 4.4). A primary composite outcome event occurred in 839 of 7356 patients (11.4%; 3.7 events per 100 person-years) in the exenatide group and in 905 of 7396 patients (12.2%; 4.0 events per 100 person-years) in the placebo group (hazard ratio, 0.91; 95% confidence interval [CI], 0.83 to 1.00), with the intention-to-treat analysis indicating that exenatide, administered once weekly, was noninferior to placebo with respect to safety (P<0.001 for noninferiority) but was not superior to placebo with respect to efficacy (P=0.06 for superiority). The rates of death from cardiovascular causes, fatal or nonfatal myocardial infarction, fatal or nonfatal stroke, hospitalization for heart failure, and hospitalization for acute coronary syndrome, and the incidence of acute pancreatitis, pancreatic cancer, medullary thyroid carcinoma, and serious adverse events did not differ significantly between the two groups. CONCLUSIONS: Among patients with type 2 diabetes with or without previous cardiovascular disease, the incidence of major adverse cardiovascular events did not differ significantly between patients who received exenatide and those who received placebo. (Funded by Amylin Pharmaceuticals; EXSCEL ClinicalTrials.gov number, NCT01144338 .)

    Multitask prediction of site selectivity in aromatic C-H functionalization reactions

    No full text
    Aromatic C–H functionalization reactions are an important part of the synthetic chemistry toolbox. Accurate prediction of site selectivity can be crucial for prioritizing target compounds and synthetic routes in both drug discovery and process chemistry. However, selectivity may be highly dependent on subtle electronic and steric features of the substrate. We report a generalizable approach to prediction of site selectivity that is accomplished using a graph-convolutional neural network for the multitask prediction of 123 C–H functionalization tasks. In an 80/10/10 training/validation/testing pseudo-time split of about 58 000 aromatic C–H functionalization reactions from the Reaxys database, the model achieves a mean reciprocal rank of 92%. Once trained, inference requires approximately 200 ms per compound to provide quantitative likelihood scores for each task. This approach and model allow a chemist to quickly determine which C–H functionalization reactions – if any – might proceed with high selectivity
    corecore