13 research outputs found

    Integrated In Vitro and In Silico Modeling Delineates the Molecular Effects of a Synbiotic Regimen on Colorectal-Cancer-Derived Cells

    Get PDF
    By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations have prevented determining the potential combina- torial mechanisms of action of such regimens. We expanded our HuMiX gut-on-a-chip model to co-culture CRC-derived epithelial cells with a model probiotic under a simulated prebiotic regimen, and we integrated the multi-omic results with in silico metabolic modeling. In contrast to individual prebi- otic or probiotic treatments, the synbiotic regimen caused downregulation of genes involved in procarci- nogenic pathways and drug resistance, and reduced levels of the oncometabolite lactate. Distinct ratios of organic and short-chain fatty acids were produced during the simulated regimens. Treatment of primary CRC-derived cells with a molecular cocktail reflecting the synbiotic regimen attenuated self-renewal ca- pacity. Our integrated approach demonstrates the potential of modeling for rationally formulating synbi- otics-based treatments in the future

    The gut microbial metabolite formate exacerbates colorectal cancer progression

    Get PDF
    The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Integrated in vitro and in silico modelling delineates the molecular effects of a synbiotic regimen on colorectal cancer-derived cells

    No full text
    By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations have prevented determining the potential combinatorial mechanisms of action of such regimens. We expanded our HuMiX gut-on-a-chip model to co-culture CRC-derived epithelial cells with a model probiotic under a simulated prebiotic regimen, and we integrated the multi-omic results with in silico metabolic modeling. In contrast to individual prebiotic or probiotic treatments, the synbiotic regimen caused downregulation of genes involved in procarcinogenic pathways and drug resistance, and reduced levels of the oncometabolite lactate. Distinct ratios of organic and short-chain fatty acids were produced during the simulated regimens. Treatment of primary CRC-derived cells with a molecular cocktail reflecting the synbiotic regimen attenuated self-renewal capacity. Our integrated approach demonstrates the potential of modeling for rationally formulating synbiotics-based treatments in the future.The authors would like to thank Dr. Christian Jäger at the LCSB Metabolomics Platform for helpful discussions and metabolite quantification, and Martine Schmitz for RT-PCR validation analysis. We thank the contributing surgeons from the Centre Hospitalier Emile Mayrisch in Esch-sur-Alzette and the nurses of the Clinical and Epidemiological Investigation Center of the Luxembourg Institute of Health for collecting samples for research purposes. The authors wish to thank Frutarom for providing the SoyLife prebiotic. K.G. was supported by an AFR PhD fellowship from the Luxembourg National Research Fund (FNR; AFR/PHD/9964547 ). This work was supported by a Luxembourg Personalised Medicine Consortium pump-prime grant (PerPreProBioCRC) and a proof-of-concept grant ( PoC/15/11014639 ) from the FNR , awarded to P.W. The project was also supported through an internal research project grant (IRP; MiDiCa) from the University of Luxembourg to S.H. and P.W., and two CORE Junior grants ( C14/BM/8066232 and C16/BM/11282028 ) awarded to J.F. and E.L., respectively. This work was further supported by an ATTRACT Programme grant ( FNR/A12/01 ) awarded to I.T., a European Research Council (ERC) grant under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 757922 ) awarded to I.T., and an FNR grant ( PRIDE15/10675146/CANBIO ) to T.B

    Integrated In Vitro and In Silico Modeling Delineates the Molecular Effects of a Synbiotic Regimen on Colorectal-Cancer-Derived Cells

    No full text
    Summary: By modulating the human gut microbiome, prebiotics and probiotics (combinations of which are called synbiotics) may be used to treat diseases such as colorectal cancer (CRC). Methodological limitations have prevented determining the potential combinatorial mechanisms of action of such regimens. We expanded our HuMiX gut-on-a-chip model to co-culture CRC-derived epithelial cells with a model probiotic under a simulated prebiotic regimen, and we integrated the multi-omic results with in silico metabolic modeling. In contrast to individual prebiotic or probiotic treatments, the synbiotic regimen caused downregulation of genes involved in procarcinogenic pathways and drug resistance, and reduced levels of the oncometabolite lactate. Distinct ratios of organic and short-chain fatty acids were produced during the simulated regimens. Treatment of primary CRC-derived cells with a molecular cocktail reflecting the synbiotic regimen attenuated self-renewal capacity. Our integrated approach demonstrates the potential of modeling for rationally formulating synbiotics-based treatments in the future. : The use of specific diets that promote the growth of beneficial microorganisms together with such microorganisms may help treat such diseases as colorectal cancer. Greenhalgh et al. show that one such synbiotic regimen induces downregulation of pro-carcinogenic and drug resistance genes as well as metabolic changes that affect the growth of cancer cells. Keywords: gut-on-a-chip, modeling, gut microbiome, prebiotic, probiotic, symbiotic, colorectal cancer, nutritional therap

    First genome-wide association study of esophageal atresia identifies three genetic risk loci at CTNNA3, FOXF1/FOXC2/FOXL1, and HNF1B

    Get PDF
    Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) is the most common congenital malformation of the upper digestive tract. This study represents the first genome-wide association study (GWAS) to identify risk loci for EA/TEF. We used a European case-control sample comprising 764 EA/TEF patients and 5,778 controls and observed genome-wide significant associations at three loci. On chromosome 10q21 within the gene CTNNA3 (p = 2.11 x 10(-8); odds ratio [OR] = 3.94; 95% confidence interval [CI], 3.10-5.00), on chromosome 16q24 next to the FOX gene cluster (p = 2.25 x 10(-10); OR = 1.47; 95% CI, 1.38-1.55) and on chromosome 17q12 next to the gene HNF1B (p = 3.35 x 10(-16); OR = 1.75; 95% CI, 1.64-1.87). We next carried out an esophageal/tracheal transcriptome profiling in rat embryos at four selected embryonic time points. Based on these data and on already published data, the implicated genes at all three GWAS loci are promising candidates for EA/TEF development. We also analyzed the genetic EA/TEF architecture beyond the single marker level, which revealed an estimated single-nucleotide polymorphism (SNP)-based heritability of around 37% +/- 14% standard deviation. In addition, we examined the polygenicity of EA/TEF and found that EA/TEF is less polygenic than other complex genetic diseases. In conclusion, the results of our study contribute to a better understanding on the underlying genetic architecture of ET/TEF with the identification of three risk loci and candidate genes

    Search for direct top squark pair production in final states with two leptons in s=13\sqrt{s} = 13 TeV pppp collisions with the ATLAS detector

    No full text
    International audienceThe results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb136.1~\hbox {fb}^{-1} of integrated luminosity from proton–proton collisions at s=13\sqrt{s}=13 TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark t~\tilde{t} and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay t~bχ~1±\tilde{t} \rightarrow b \tilde{\chi }_{1}^{\pm } into a b-quark and the lightest chargino with χ~1±Wχ~10\tilde{\chi }_{1}^{\pm } \rightarrow W \tilde{\chi }_{1}^{0} , the decay t~tχ~10\tilde{t} \rightarrow t \tilde{\chi }_{1}^{0} into an on-shell top quark and the lightest neutralino, the three-body decay t~bWχ~10\tilde{t} \rightarrow b W \tilde{\chi }_{1}^{0} and the four-body decay t~bνχ~10\tilde{t} \rightarrow b \ell \nu \tilde{\chi }_{1}^{0} . No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the t~\tilde{t} and χ~10\tilde{\chi }_{1}^{0} masses. The results exclude at 95% confidence level t~\tilde{t} masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches

    Measurements of ttˉt\bar{t} differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pppp collisions at s=13\sqrt{s}=13\, TeV using the ATLAS detector

    No full text
    Measurements are made of differential cross-sections of highly boosted pair-produced top quarks as a function of top-quark and ttˉt\bar{t} system kinematic observables using proton--proton collisions at a center-of-mass energy of s=13\sqrt{s} = 13 TeV. The data set corresponds to an integrated luminosity of 36.136.1 fb1^{-1}, recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one with transverse momentum pT>500p_{\rm T} > 500 GeV and a second with pT>350p_{\rm T}>350 GeV, are used for the measurement. The top-quark candidates are separated from the multijet background using jet substructure information and association with a bb-tagged jet. The measured spectra are corrected for detector effects to a particle-level fiducial phase space and a parton-level limited phase space, and are compared to several Monte Carlo simulations by means of calculated χ2\chi^2 values. The cross-section for ttˉt\bar{t} production in the fiducial phase-space region is 292±7 (stat)±76(syst)292 \pm 7 \ \rm{(stat)} \pm 76 \rm{(syst)} fb, to be compared to the theoretical prediction of 384±36384 \pm 36 fb
    corecore