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SUMMARY

Bymodulating the human gut microbiome, prebiotics
and probiotics (combinations of which are called
synbiotics) may be used to treat diseases such as
colorectal cancer (CRC). Methodological limitations
have prevented determining the potential combina-
torial mechanisms of action of such regimens.
We expanded our HuMiX gut-on-a-chip model to
co-culture CRC-derived epithelial cells with a model
probiotic under a simulated prebiotic regimen, and
we integrated the multi-omic results with in silico
metabolic modeling. In contrast to individual prebi-
otic or probiotic treatments, the synbiotic regimen
caused downregulation of genes involved in procarci-
nogenic pathways and drug resistance, and reduced
levels of the oncometabolite lactate. Distinct ratios of
organic and short-chain fatty acids were produced
during the simulated regimens. Treatment of primary
CRC-derived cells with amolecular cocktail reflecting
the synbiotic regimen attenuated self-renewal ca-
pacity. Our integrated approach demonstrates the
potential of modeling for rationally formulating synbi-
otics-based treatments in the future.

INTRODUCTION

The human gut microbiome is increasingly recognized as playing

a major role in human health and disease (Pflughoeft and Versa-

lovic, 2012). Modulation of the gut microbiome using prebiotics

(non-digestible nutrients, e.g., dietary fiber, that promote the

growth of beneficial microorganisms in the host [Hutkins et al.,

2016]), probiotics (live microorganisms that, when administered

in adequate amounts, confer health benefits to the host [FAO and

WHO, 2002]), or combinations thereof (synbiotics) is regarded as

a means to prevent microbiome-linked diseases, such as colo-

rectal cancer (CRC) (Rafter et al., 2007; Raman et al., 2013). In
Cell
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addition, such dietary regimensmay act as supportive therapeu-

tic options in the management of diseases (DiMarco-Crook and

Xiao, 2015; Ho et al., 2018). However, although microbiome-

modulating therapeutics hold great promise (Valencia et al.,

2017), dietary regimens are not formally integrated in current

treatment plans (Caccialanza et al., 2016).

The health benefits attributed to dietary fiber and prebiotics in

the prevention of CRC (Murphy et al., 2012; Raman et al., 2013)

are mainly attributed to the metabolic activity of the gut micro-

biome resulting in specific fermentation products, such as

lactate and short-chain fatty acids (SCFAs) and not to the fiber

itself (Koh et al., 2016; Sharma and Shukla, 2016). Thereby, com-

mon dietary guidance for CRC patients is to consume a diet rich

in fiber (Song et al., 2018). However, due to the limitations

of existing methodologies, in particular the lack of means to

study the molecular effects of diet-microbiome-host interactions

(Read and Holmes, 2017), limited evidence exists on the thera-

peutic benefits of pre- and probiotics in CRC treatment. A limited

number of studies have focused on inflammatory and prolifera-

tive signatures in CRC cells, but these have not assessed the

linked changes in gene expression or metabolism (Ho et al.,

2018; Le Leu et al., 2005). Nevertheless, the results from these

initial studies indicate the need for investigating the combinato-

rial effects of synbiotics at the molecular level as they may be

harnessed for therapeutic approaches in conjunction with other

CRC treatments. In this context, elucidating the mechanisms of

action of synbiotic regimens in relation to their possible influence

on chemotherapy resistance (Ho et al., 2018; Niero et al., 2014)

may prove particularly valuable to improve the efficacy of current

anti-cancer treatments.

Due to the fact that CRC is mostly driven by environmental fac-

tors (e.g., diet) (Blot and Tarone, 2015; Rothenberg, 2015) and a

broad range of mutations (Armaghany et al., 2012), it is chal-

lenging to recapitulate the complexity of the disease using only

one specific model (Young et al., 2013). Differences in diet, gut

topology, genetic background, and microbiome composition,

aswell as the immune system, render widely usedmurinemodels

questionable for investigating mechanisms underlying human

host-microbiome interactions (Fritz et al., 2013; Hildebrand
Reports 27, 1621–1632, April 30, 2019 ª 2019 The Author(s). 1621
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Figure 1. Integrated In Vitro and In Silico Modeling of the Interactions between Dietary Fiber, a Probiotic, and Human Cells

(A) Conceptual diagram of the in vitro human cells-microbe gut model HuMiX. The probiotic is cultured in the presence of the simulated dietary regimens in the top

chamber separated via a nanoporous membrane from the middle chamber that houses human epithelial cells (e.g., Caco-2 cells). The bottom chamber, also

separated from themiddle chamber via amicroporousmembrane, is perfusedwith cell culturemedium andmediates the transport of nutrients to the human cells’

basal surface. Using a transwell system setup, no growth of human cells in the presence of dietary fiber compounds could be observed. See also Figure S1.

In contrast, Caco-2 cells were viable when using the HuMiX model (Figure S2).

(B) Compositions of two distinct dietary regimens. The high-fiber (HF) regimen consisted of a medium high in starch and dietary fiber (including prebiotics). The

reference (REF) regimen contained neither dietary fiber (or prebiotics) nor starch. Both dietary regimens contained approximately the same amount of protein and

vitamins/minerals.

(C) Diagram of the in silico model used for the simulation of the effects of prebiotic and probiotic combinations on the human cells. The model of LGG from the

AGORA modeling framework was integrated with the context-specific colon adenocarcinoma (COAD) model using Recon2 via the FASTCORMICS workflow.
et al., 2013). Although a major limitation of in vitromodels is their

reduced complexity, such models allow recapitulation of human

host-microbiome interactions and thereby allow the probing of

molecular exchanges between microbial and human cells and

their repercussions in a representative manner (Bein et al.,

2018; Paul et al., 2018). However, to study the complex and

dynamic processes driving diet-host-microbiome interactions

and their effects on CRC progression, in vitro models that allow

the investigation of molecular interactions between the specific

contingents are required. Moreover, when these models are

complemented using in silico modeling, we can study specific

individual metabolic reactions (e.g., via reaction fluxes), thereby

linking functional potential (in silico) to experimental measure-

ments (in vitro) (Magnúsdóttir and Thiele, 2018).

Here, we used our representative microfluidics-based human-

microbial co-culture system called HuMiX (Shah et al., 2016) to

obtain essential mechanistic insights into the interplay between

a simulated high-fiber (HF) diet, the model probiotic Lactoba-

cillus rhamnosus Gorbach-Goldin (LGG), and human CRC cells.

We combined in vitro multi-omic data (transcriptomics and

metabolomics) with in silico simulations by using an integrated

constraint-basedmodel (CBM) (Orth et al., 2010) of colon adeno-

carcinoma (COAD) cells coupled to a curated genome-scale

metabolic reconstruction of LGG (Magnúsdóttir et al., 2017). In

contrast to individual prebiotic or probiotic treatments, the syn-

biotic regimen caused downregulation of genes involved in pro-

carcinogenic pathways and drug resistance, resulting in reduced

levels of the oncometabolite lactate. In vitro, different ratios of

organic and short-chain fatty acids were produced by the probi-

otic during the simulated regimens. We validated our results by

testing distinct cocktails of these metabolites reflecting the

different combinations on spheroid cultures generated from pri-

mary colon tumors. The treatment with a cocktail reflecting the

synbiotic regimen attenuated self-renewal capacity in primary
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CRC-derived cells, a cellular hallmark of tumor progression

and disease dissemination. Taken together, our results provide

mechanistic support regarding the potential of integrating synbi-

otic combinations in the context of therapeutic regimens for

CRC (DiMarco-Crook and Xiao, 2015; Le Leu et al., 2005). We

anticipate that, in the near future, such integrative in vitro and

in silicomodeling could be used to develop personalized dietary

treatments, including dietary guidelines and probiotic supple-

mentation for CRC patients.

RESULTS

Establishment of an In Vitro and In Silico Model System
to Study the Interactions between Dietary Fiber,
Probiotics, and the Human Host
In accordancewith previous reports (Niero et al., 2014), we found

that a simulated dietary fiber regimen (e.g., prebiotic regimen) is

incompatible with standard cell culture approaches (Figure S1).

In contrast, the use of the HuMiX model allows the exposure of

human cells to dietary compounds and live bacterial cells via

the apical interface, thereby mimicking in vivo physiology and

enabling the study of diet-host-microbe molecular interactions

(Figure 1A). To simulate a fiber-rich prebiotic regimen, we

formulated a HF medium containing major non-digestible

carbohydrates and supplemented it with additional prebiotics

including arabinogalactan, xylan, and soy (Gibson et al., 1988)

(Figure 1B). A human cell culture medium providing the basic

requirements for culture of both Caco-2 cells and LGG (Shah

et al., 2016) was used as reference (REF) medium, i.e., a medium

containing no dietary fiber. Using the different simulated dietary

regimes (HF alone or REF alone), we studied the molecular

impact of diet on bacterial and human cell physiology (measured

by transcriptomics) as well as on the resulting intercellular cross-

talk (metabolomics).
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Figure 2. A Simulated HF Regimen Alone Alters the Energy Meta-

bolism in Caco-2 Cells

(A) List of down- and upregulated differential flux span reactions in HF-ex-

posed Caco-2 cells. The inner ring represents upregulated reactions; the outer

ring represents downregulated pathways (Table S3). Each section of the plot

indicates the fraction in % of all the listed pathways. See also Figure S2C.

(B and C) Caco-2 cells were grown in the HuMiX model in the presence of the

simulated HF regimen or REF medium. Differentially expressed genes were

calculated using the Wald test implemented in DESeq2 with Benjamini-

Hochberg multiple testing correction at 0.05 significance.

(B) In vitro glycolysis-related genes differentially expressed in HF-exposed cells

compared to REF-exposed cells. Data are shown as mean ± SD for three REF-

exposed and four HF-exposed independent HuMiX experiments. pfk, phos-

phofructokinase; aldob, aldolase B; fbp1, fructo-1,6-biphosphatase; pklr,

pyruvate kinase isozymesR and L; snai1, snail family transcriptional repressor 1.

(C) Integrated schematic overview of in vitro and in silico results reflecting the

effects of the simulated HF regimen on Caco-2 cell metabolism and colors

indicate omics type. Differences in metabolite values were obtained using

Welch’s t test by comparing the data from technical duplicates for two REF-

exposed and three HF-exposed independent HuMiX experiments. See also

Figure S2A and Table S1. In silico values represents differential flux span of

HF-exposed and REF-exposed Caco-2 cells, summarized by assigned re-

action subsystems retrieved from the Virtual Metabolic Human (VMH)

database. Shown in color key: *p < 0.05; **p < 0.01; ***p < 0.0001; ****p <
To complement the in vitro modeling, we coupled a CBM

(Orth et al., 2010) of COAD cells with a model of LGG (Magnús-

dóttir et al., 2017) A context-specific model of COAD was

reconstructed, starting with the genome-scale human meta-

bolic reconstruction Recon2 (Thiele et al., 2013) and data

from The Cancer Genome Atlas (TCGA) dataset (Rahman

et al., 2015), as well as an extension to the FASTCORMICS

workflow (Pacheco et al., 2015) that uses RNA-seq data

(M.P.P., T.B., D. Ternes, D. Kulms, S.G., E.L., T.S., unpublished

data) (Figure 1C). The models were further contextualized with

in vitro data by using growth rates and secretion product ratios

generated in this study. For each dietary regimen (HF alone,

REF alone, HF + LGG, REF + LGG), we determined the differen-

tial flux span of each cell-type (Caco-2 and LGG), which were

grouped and summarized by assigned reaction subsystems

retrieved from the Virtual Metabolic Human (VMH) database

(Noronha et al., 2019).

A Simulated HF Regimen Alone Affects Energy
Metabolism in Caco-2 Cells
Recent studies have linked altered metabolism, through the pro-

duction of oncometabolites, to tumorigenesis in CRC (Corrado

et al., 2016; Morin et al., 2014). Analysis of the in silico differential

flux spans in HF-exposed Caco-2 cells in comparison to REF-

exposed cells revealed that the flux spans of 11 subsystem reac-

tions were smaller in the COAD model when exposed to the

simulated HF regimen versus the REF medium, including trans-

port, pentose phosphate metabolism, glycolysis, and gluconeo-

genesis, as well as fatty acid oxidation and synthesis (Figure 2A).

No COAD model reaction in Caco-2 had larger flux spans when

comparing predictions from the simulated HF regimen with the

REF medium (Figure 2A). Next, we analyzed whether alterations

in energy metabolism affected gene regulation. Indeed, expres-

sion of several glycolytic enzymes was found to be significantly

reduced in Caco-2 cells after co-culture with the simulated

HF regimen (Figure 2B), including phosphofructokinase (pfk),

aldolase B (aldob), fructo-1,6-biphosphatase (fbp1) and pyru-

vate kinase isozymes R and L (pklr) (Figure 2B). The snail family

transcriptional repressor 1 (snai1), which regulates glycolysis by

inhibiting pfk expression (Kim et al., 2017), was significantly

increased (Figure 2B). Increased glucose, lactate, and glutamine

levels promote metabolic reprogramming (Altman et al., 2016;

Jang et al., 2013), and, thus, we next investigated intracellular

concentrations in Caco-2 cells. In vitro, the intracellular lactate

concentrations in Caco-2 cells were significantly reduced (p =

2.63 3 10�3) in the presence of the simulated HF regimen

compared with the REF condition (Figure S2A and Table S1).

Furthermore, a downregulation (although not significant) of

lactate transporters was observed in Caco-2 cells exposed to

the simulated HF regimen compared with the REF medium (Fig-

ure S2B). Additionally, the concentration of intracellular glucose

was decreased (although not significant), while the concentra-

tion of glutamine was significantly increased (p = 2.43 3 10�3)
0.00001; ns, not significant. PYR, pyruvate; ALDH, aldehyde dehydroge-

nase; ACAT, acetyl CoA; TPT, triose phosphate; TKT, transketolase; RPIA,

ribose 5-phosphate isomerase; PGAM, phosphoglycerate mutase; PPM,

phosphopentomutase.
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Figure 3. A Simulated HF Regimen Alone Activates Several Oncogenes and Pro-Inflammatory Pathways in Caco-2 Cells

(A) Global expression profiles of Caco-2 cells grown under different conditions. Principal-component analysis (PCA); each dot represents a biological replicate

and colors indicate sample type (shown in color key).

(B) Pathway enrichment analysis of Caco-2 cells. Log2FC of 1 was used as a cut-off. The y axis contains the name of the pathway as provided by MetaCore and

shows top enriched pathways based on false discovery rate (FDR). The Q value indicates the significance of the effect on the pathway derived from the p value

represented in shades of turquoise. See Tables S2 and S6 for the full list of up- and downregulated pathways. DE, differentially expressed. Data are shown from

three REF-exposed and four HF-exposed independent HuMiX experiments.

(C) Relative expression of differentially expressed genes in Caco-2 cells after exposure to the simulated HF regimen or REF medium. Data are shown as mean ±

SD for three REF-exposed and four HF-exposed independent HuMiX experiments. Differentially expressed genes were calculated using the Wald test

implemented in DESeq2 with Benjamini-Hochberg multiple testing correction at 0.05 significance (Table S2; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

traf6, TNF receptor-associated factor-6; wnt5a, wingless integrated 5A; cox-2, cyclooxygenase-2; c-jun, c-jun proto-oncogene.
in HF-exposed cells compared with REF-exposed cells (Figures

2C and S2A; Table S1).

A Simulated HF Regimen Alone Activates Several
Oncogenes and Pro-inflammatory Pathways in Caco-2
Cells
Next, we evaluated the effect of the simulated HF regimen on

Caco-2 cell proliferation and viability. Although growth and

viability of Caco-2 cells in HuMiX were comparable between

the simulated dietary regimens (Figures S2D and S2E), the regi-

mens had a pronounced effect on the global transcriptome pro-

file of Caco-2 cells (Figure 3A). To place the transcriptome data

into biological context and reveal CRC signatures in human cells,

we performed a pathway analysis. When exposed to the simu-

lated HF regimen, the most enriched pathways were among

others responsible for regulating inflammatory responses in

CRC (Figure 3B; Table S2), e.g., IL-1 signaling (Voronov and

Apte, 2015; Wang and Dubois, 2010).

The network objects identified from the pathway analysis

included the IL-1 receptor 1 (il-1r1), as well as its downstream

targets, TNF receptor-associated factor (traf6), cyclooxyge-

nase-2 (cox-2), and c-jun (Figure 3C). The wingless integrated
1624 Cell Reports 27, 1621–1632, April 30, 2019
(WNT) pathway included such network objects as ligand wnt5a

as well as downstream targets, such as snai1 and Frizzled-4

(fzd4), which were upregulated only when Caco-2 cells were

exposed to the simulated HF regimen (Figure 3C; Table S2).

Wnt signaling and its downstream targets are known to be

involved in CRC progression and drug resistance (Chikazawa

et al., 2010; Guo et al., 2016; Voronov and Apte, 2015; Zhan

et al., 2017) and are moderated in part by dietary agents

(Tarapore et al., 2012).

A Simulated HF Regimen Affects Gene Expression and
Metabolism of a Probiotic
We evaluated the effect of the simulated HF regimen on LGG

growth and viability. Although LGG viability was not significantly

affected by the presence of HF or REF medium (Figure S2F),

LGG growth was significantly reduced in the presence of the

simulated HF regimen than with REF (Figure S2G). The simulated

dietary regimen had a marked effect on the global transcriptome

profile of LGG (Figure 4A), similar to what we observed for the

human cells; we observed 355 differentially expressed genes

in LGG, including 47 upregulated hypothetical proteins, when

exposed to the simulated HF regimen versus the REF medium.
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Figure 4. A Simulated HF Regimen Affects Gene Expression and Metabolism of the Probiotic LGG

(A) Global expression profiles of LGG grown under HF or REF dietary regimens and co-culture with Caco-2 cells in HuMiX. PCA; each dot represents a biological

replicate and colors indicate sample type (shown in color key).

(B) Measurement of organic and SCFA secretion products by LGG grown in the presence of HF or REFmedium. Values are based on technical triplicates and five

independent experiments and include background subtraction from freshmedium, normalized to cell count. Statistical significancewas calculated usingWelch’s

t test (**p < 0.01; ***p < 0.001). See also Table S3.

(C) Metabolic pathways with differential flux span in the probiotic LGG when exposed to the simulated HF regimen compared to REF regimen as determined by

the in silicomodeling. The inner ring shows the upregulated pathways; the outer ring shows the downregulated pathways. Each section of the plot indicates the

fraction (in %) of total listed pathways.
Genes encoding the cellobiose transporter were upregulated in

LGG in the presence of the simulated HF regimen, suggesting

the catabolism of prebiotic components by LGG. Indeed, catab-

olism of prebiotic components used in our simulated HFmedium

(e.g., arabinogalactan, xylan) has previously been suggested for

Lactobacillus species (Douillard et al., 2013; Jaskari et al., 1998).

These prior observations were supported by our own metabolo-

mic analyses of organic and short-chain fatty acids in the

supernatant (spent medium) when LGG is provided with different

dietary substrates. For instance, when LGG is provided with sim-

ple sugars (REF medium), mainly lactate and smaller amounts of

acetate and formate are produced (22.6 mM, 0.76 mM, and

0.52 mM respectively). In stark contrast, less lactate (3.22 mM)

but significantly higher levels of acetate (5.15 mM) and formate

(4.12 mM) were observed when LGGwas grown in the simulated

HF medium (Figure 4B; Table S3). In silico, 13 subsystems had

reactions with decreased flux spans in the LGGmetabolic model

under the simulated HF regimen compared with the REF me-

dium, including the TCA cycle, amino acid and energy meta-
bolism, glycolysis and gluconeogenesis, and starch and sucrose

metabolism, as well as fatty acid oxidation and synthesis (Fig-

ure 4C). Four additional subsystem reactions had larger flux

spans in LGG under the simulated HF regimen, including the

subsystems of transport, arginine and proline metabolism, and

the urea cycle (Figure 4C). This indicates that dietary substrates

are differentially metabolised by the probiotic LGG and it pro-

duces highly diet-dependent combinations of organic acids

(e.g., formate and lactate) and SCFAs (e.g., acetate).

Competition and Metabolic Cross-Feeding between the
Probiotic and Caco-2 Cells
We further investigated how the different dietary regimens

affected the metabolism of the human cells and the probiotic

by analyzing the intracellular metabolites of both cell contingents

following co-culture in the HuMiX model (Figure 5A; Tables S1,

S4, and S5). Although the intracellular concentrations of amino

acids such as leucine and glutamine were higher in Caco-2 cells

when grown in the presence of the simulated HF regimen in
Cell Reports 27, 1621–1632, April 30, 2019 1625
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Figure 5. In Vitro and In Silico Metabolic

Changes in Caco-2 Cells and LGG after

Co-culture in HuMiX

(A) Relative abundances of in vitro intracellular

metabolites in Caco-2 cells and LGG. Values are

based on technical duplicates and three inde-

pendent HuMiX experiments. Colors indicate

sample type (shown in color key) and stronger

shades of blue indicate increased relative abun-

dance. Values compare the effect of the simulated

HF regimen versus the REF medium, and to the

effect of HF + LGG versus REF + LGG. Statistical

significance was calculated using Welch’s t test

(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

See also Figure S2A and Tables S1 and S4.

(B) In silico simulation ofmaximal fluxofmetabolites

in Caco-2 cells and LGG. Negative values indicate

consumption of the metabolite, positive values

indicate production of the metabolite in mmol per

gram dry weight per hour (mmol* g DW-1 hr-1).

Colors indicate sample type (shown in color key).

(C) Reactions with differential flux span in Caco-2

cells with HF + LGG compared to cells with REF +

LGG as determined by the in silico modeling. The

outer ring shows the fraction (in % of total) of

downregulated pathways; the inner ring shows

upregulated pathways.
comparison to cells grown in the presence of REF medium, the

relative intracellular abundance of these amino acids in Caco-2

cells when co-cultured with the probiotic were significantly

lower, regardless of the simulated diet used (Figure 5A; Tables

S1 and S5). In silico, the flux spans through internal exchange

reactions, which reflect nutrient exchange between Caco-2 cells

and LGG, showed that both types of cells used these amino

acids from the simulated dietary regimens provided, suggesting

competition for these nutrients (Figure 5B). In vitro measure-

ments showed that relative intracellular concentrations of

leucine and glutamine were higher in LGG when compared to

Caco-2 cells (Figure 5A; Tables S1, S4, and S5). This indicates

that the probiotic outcompetes the host for these amino acids.

Similarly, the intracellular glucose concentrations in Caco-2

cells, which were highest when the cells were exposed to the

REF medium alone, were significantly lower when Caco-2 cells

were grown in the presence of the REF medium and LGG. This

finding suggests that LGG was consuming the glucose, and

therefore less glucose was available for the Caco-2 cells (Fig-

ure 5A). By contrast, intracellular lactate concentrations were

the highest in Caco-2 cells when exposed to the probiotic

LGG, regardless of the simulated diet used (Figure 5A; Table

S5). This finding suggests potential metabolic cross-feeding of

lactate produced by the probiotic LGG. In silico, metabolic

cross-feeding was observed between Caco-2 and LGG. Ace-

tate, succinate, lactate, and alanine were secreted by LGG and

consumed by Caco-2 cells only when co-cultured with LGG ac-

cording to the enlarged flux spans associated with the corre-

sponding exchange reactions (Figure 5B).While overall transport
1626 Cell Reports 27, 1621–1632, April 30, 2019
reactions in Caco-2 cells and LGG had larger flux spans when

provided with the simulated HF regimen, fluxes through fatty

acid synthesis and oxidation, glycolysis and gluconeogenesis,

and the urea cycle (among other pathways) were decreased in

Caco-2 cells (Figure 5C). Taken together, our in vitro metabolite

profiles and in silico simulations highlight metabolic cross-

feeding as well as competition for resources between the probi-

otic LGG and Caco-2 cells.

To better understand which genes or pathways in LGG (when

exposed to the simulated HF regimen) were responsible for the

observed changes in gene expression in Caco-2 cells, we linked

the Caco-2 in silico predicted differential fluxes to the LGGdiffer-

ential gene expression data and observed that the functions of

21 genes in LGG were associated with 34 reactions in the

Caco-2 cells (Table S7), indicating diet-dependent effects of

LGG metabolism on Caco-2 cell metabolism.

The Synbiotic Regimen Decreases Expression of
Pro-carcinogenic Genes and ABC-Transporters in
Human Cells
Next, we analyzed how growth in the presence of the LGG pro-

biotic altered gene expression in Caco-2 cells. Principal-compo-

nent analysis showed that the presence of LGG had an effect on

the global transcriptome profile of Caco-2 cells grown in the

simulated HF regimen but not when REF medium was used (Fig-

ure 3A). A total of 1,771 genes was differentially expressed in

Caco-2 cells grown in the simulated HF regimen in the presence

of LGG compared with the expression in the same dietary

regimen in the absence of LGG. Pathway enrichment analysis
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Figure 6. The Synbiotic Regimen Causes Down-Regulation of CRC-Associated Genes and Pathways in Caco-2 Cells

(A) Enrichment pathway analysis of Caco-2 cells when exposed to HF + LGG compared to REF + LGG. Log2FC of 1 was used as a cut-off. The y axis contains the

name of the pathway as provided by MetaCore and shows top enriched pathways based on false discovery rate (FDR). The Q value indicates the significance of

the effect on the pathway derived from the p value represented in shades of turquoise. Data are shown from three independent HuMiX experiments per condition.

See Tables S2 and S6 for the full list of up- and downregulated pathways, respectively. DE, differentially expressed.

(B) Relative expression of differentially expressed ABC transporter genes in Caco-2 cells. Data are shown asmean ±SD of three independent HuMiX experiments

per condition. Colors indicate sample type (shown in color key). Differentially expression analysis was performed using theWald test implemented in DESeq2with

Benjamini-Hochberg multiple testing correction at 0.05 significance (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). ABC, ATP-binding cassette transporter.
showed that apoptosis and survival granzyme A signaling, as

well as protein folding and maturation, were upregulated when

Caco-2 cells were exposed to HF + LGG (synbiotic; Figure 6A)

but downregulated when exposed to HF alone. Notably, a sub-

stantial number of CRC-associated pathways was downregu-

lated including the ‘‘colorectal cancer’’ pathway (as defined in

MetaCore), and G-protein K-RAS signaling (Figure 6A). Down-

stream targets of Kirsten rat sarcoma (K-RAS) signaling such

as phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic

subunit alpha (PI3K-CA) were also downregulated only in the

HF + LGG condition (Table S6).

In addition to the downregulated CRC-associated pathways,

the expression of several ABC transporters was significantly

decreased in Caco-2 cells after co-culture with the combination

of HF + LGG (Figure 6B). ABC transporters have been implicated

in drug resistance (Gottesman et al., 2002), and high abcc2

expression has also been associated with the early stages of

CRC progression (Andersen et al., 2015). A search of the differ-

entially expressed gene list of Caco-2 cells grown in the pres-

ence of HF + LGG against the DrugBank database revealed

that the downregulated genes abcc2, abcc3, cyp1a1, cox-2,

and cyp2d6 all encode targets of CRC drugs (Table S8). This

suggests that probiotics, dietary regimens, and combinations

thereof can affect major gene targets of CRC drugs.
The Combination of Organic and Short-Chain Fatty
Acids Produced by LGG Is Diet Dependent and Elicits
Differential Effects in CRC Cells
The observed changes in host gene expression could be due to

the diet-dependent metabolites secreted by LGG (Thomas and

Versalovic, 2010). As some of these pathways (e.g., PIK3-CA

and the mammalian target of rapamycin [mTOR] signaling

pathway) are related to cell self-renewal capacity (Xia and Xu,

2015), we stimulated Caco-2 cells and a primary CRC cell line

(T-6) with the fermentation products produced by LGG in the

presence of the simulated HF or REF medium. The CRC

spheroid cultures were first separately exposed to 10 mM of

the individual metabolites (which is between 2.5 and 12.5 times

higher than the concentrations of the SCFAs produced by

LGG). Under these conditions, the self-renewal capacity signif-

icantly increased in both Caco-2 and T-6 cells compared with

the untreated controls (Figure 7A). However, when the cells

were treated with the respective ratios of metabolites produced

by LGG when exposed to the two dietary regimens (Figure 4B),

we observed that only the cocktail of molecules reflecting the

synbiotic attenuated cancer cell self-renewal capacity (Figures

4B and 7A). Thereby, the distinct, diet-dependent ratios of

organic and short-chain fatty acids produced by the probiotic

produced during the synbiotic regimen were able to revert
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A B Figure 7. Metabolic Products Produced by

LGG under the Different Simulated Dietary

Regimens Differentially Impact CRC Cell

Growth

Representative assay validated performing three

independent experiments using Caco-2 and primary

T-6 cells (shown as the mean of technical replicates

with 95% confidence interval [CI]).

(A) Effect of individual exposures to acetate, lactate,

and formate (10 mM) on CRC cell self-renewal

capacity.

(B) Effect of exposure to the diet-dependent cocktail

of molecules secreted by LGG on human CRC cells

self-renewal capacity. Statistical significance was

assessed using a Chi-square test (*p < 0.05; **p <

0.01). SCFAs, short-chain fatty acids.
the cellular hallmarks of tumor progression and disease

dissemination.

DISCUSSION

CRC is a multifactorial disease, and different cellular pathways

play a role at different stages. While the combined use of pre-

and probiotics may support the treatment of CRC (Ho et al.,

2018), limited research exists to explain the mechanisms of ac-

tion of such synbiotic regimens due to methodological limita-

tions. Therefore, we expanded our HuMiX gut-on-a-chip model

to co-culture CRC-derived epithelial cells with a model probiotic

under a simulated prebiotic HF regimen. By using our integrated

multi-omic approach in combination with in vitro and in silico

metabolic modeling, we were able to unravel the combinatorial

effects of the studied synbiotic regimen on CRC cells. Observed

effects included downregulation of CRC-associated signaling

pathways and drug-resistance genes, and enhanced metabolic

competition as well as the production of specific ratios of small

molecules which attenuated cancer cell self-renewal capacity.

Inflammatory responses have been linked to both the develop-

ment and progression of CRC (Rhodes and Campbell, 2002).

Exposure of CRC-derived cells to the simulated prebiotic

regimen (HF alone) led to an upregulation of signaling pathways

related to inflammation. Experimental and clinical studies indi-

cate that colonocyte homeostasis requires gutmicrobial fermen-

tation of dietary fiber. Oxidative stress and inflammation in the

colon can thereby be caused by dysbiotic luminal fermentation

and/or deficiencies in SCFAs (Harty, 2013; Singh et al., 2018).

In addition to deficiencies in SCFAs, specific components pre-

sent in the HF regimen (e.g., pectins), which in the absence of

LGG are not prone to microbial fermentation, are most likely

responsible for the pro-inflammatory effects observed in the

human cells (Singh et al., 2018). In contrast, when the CRC-

derived cells were treated with the synbiotic combination (HF +

LGG), inflammation-driven CRC-associated signaling pathways

as well as CRC-oncogenes expression were downregulated.

Thus, we speculate that the altered gut microbiome composition

arising due to harsh CRC treatments, together with the con-

sumption of dietary fiber may indeed promote CRC progression.

Apart from CRC-oncogenes, we observed that the synbiotic

formulation reduced the expression of ATP-binding cassette

(ABC) transporter genes, which play roles in the resistance to
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anti-cancer drugs (Gottesman et al., 2002). In fact, overexpres-

sion of these transporters is the most commonly observed

mechanism through which cancer cells become drug resistant

(Davis and Tew, 2017; Szakács et al., 2006). Therefore, the tar-

geting of ABC transporter expression may be a promising

strategy to sensitize drug-resistant cancer cells (Gottesman

et al., 2002). In this context, gut microbiota have the po-

tential to interact with ABC transporters (Mercado-Lubo and

McCormick, 2010) and, thus, have been suggested as therapeu-

tic agents for CRC (Hlavata et al., 2012). Abca2, which was

downregulated in the CRC-derived cells only when exposed to

the synbiotic regimen, might be of particular interest because

the inhibition of ATP-binding cassette transporter-2 (ABCA2) de-

sensitizes resistant cancer cells (Davis and Tew, 2017). The

bacterial toxin cycle inhibiting factor (Cif) has been found to

selectively reduce abcc2 transporter expression and has been

shown to increase the sensitivity to chemotherapeutic drugs

(Patyar et al., 2010; Ye et al., 2008). We did not identify a homo-

log of Cif in LGG, which suggests that other bacterial molecules

or components in the prebiotic medium elicit similar effects.

Taken together, our results demonstrate that only the synbi-

otic regimen downregulated the expression of genes conferring

drug-resistance. When dietary fiber was provided alone to CRC-

derived cells, we observed inflammatory signaling pathways

to be upregulated, which is in contrast to the beneficial

effects previously observed for dietary fiber consumption in

CRC prevention (Murphy et al., 2012). However, our results are

in line with a recent cohort study conducted by the European

Prospective Investigation into Cancer and Nutrition (EPIC),

which found that increased intake of dietary fiber was not

associated with increased CRC-survival (Ward et al., 2016).

Therefore, synbiotics and/or produced molecules may prove

efficacious for decreasing CRC-progression by limiting resis-

tance to anti-cancer drugs in the future.

Because one of the drivers of cancer progression is metabolic

competition and cross-feeding in the tumor microenvironment

(Chang et al., 2015), it is of relevance to understand what dietary

components are utilized by probiotics such as LGG or other

commensals thatmay be located in vicinity of the tumor. Regard-

less of which dietary regimenwas provided, the probiotic utilized

the same substrates as the host cells in vitro and in silico, high-

lighting competition over resources. Furthermore, the flux span

analysis of exchange reactions showed that several metabolites



secreted by the probiotic, namely lactate, succinate, alanine,

and acetate, were only available to the CRC-derived cells

when co-cultured with the probiotic (metabolic cross-feeding).

Enteric bacteria interact extensively with the host through meta-

bolic substrate exchange (Nicholson et al., 2005). Pre- and

probiotics should therefore be selected such that the metabolic

end products of a synbiotic regimen may not promote cancer

cell growth. In this context, our results underpin the concept

of formulating synbiotic regimens that limit metabolic cross-

feeding and enhance competition between the gut microbiome

and host cells, thereby limiting the production of primary sub-

strates for CRC cell growth.

We further investigated whether the production of specific

molecules secreted by the probiotic under the different simu-

lated regimens may exhibit specific anti-cancer properties.

Lactobacilli are capable of hydrolyzing dietary fiber (Gänzle

and Follador, 2012), but the resulting metabolic end products

so far remain elusive. Inconsistencies in human trials concerning

probiotic supplementation for CRC patient could be due to

highly individualized diet-probiotic combinations. Here, we

demonstrate that the probiotic LGG produces a distinct set of

metabolites according to available dietary substrates and,

consequently, the beneficial effects of probiotic supplementa-

tion largely depend on diet. For instance, the molecular cocktail

produced by LGG during the synbiotic regimen attenuated can-

cer cell self-renewal capacity. Self-renewal capacity is a proxy

for a cell’s ability to maintain an undifferentiated state and to

form colonies (Francipane and Lagasse, 2014; He et al., 2009).

This in turn depends on the function of cellular and molecular

pathway(s) essential for the growth and the maintenance of

self-renewal of cancer stem cells (e.g., the PIK3-CA and mTOR

signaling pathway) (Xia and Xu, 2015). It has not escaped our

attention that the downregulation of this pathway in the CRC-

derived cells might be due to the diet-dependent cocktail of

molecules produced by the probiotic.

Our results demonstrate the importance of including dietary

formulations, such as the synbiotic combination tested here,

into CRC treatment plans (Niero et al., 2014). Further studies,

including investigations of additional combinations of synbiot-

ics, are necessary to further explore the mechanisms through

which prebiotics and probiotics influence the molecular and

cellular hallmarks of CRC cells. Of particular interest will be

studies that use different synbiotic regimens as adjuvants,

i.e., in combination with anti-cancer drug treatments. In this

context, our findings may also be of interest for the treatment

of inflammatory diseases of the gut that may precede CRC,

such as inflammatory bowel disease. Additional studies

involving representative, complex gut microbiota will also be

required to understand the physiological repercussions of syn-

biotics in relation to the overall microbial context of the human

gut. Finally, personalized in vitro models comprising primary

CRC-derived cells and the microbiota from the same individual

will allow to delineate individual-specific responses to formu-

late personalized treatment regimens. The combination of

in vitro models, such as HuMiX, with in silico simulations will,

thus, prove indispensable to unravel the combinatorial effects

of synbiotics and drugs for improved anti-cancer treatments

in the future.
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Kogel, K.H., Voll, L.M., Schäfer, P., Jansen, C., Wu, Y., Langen, G., Imani, J.,

Hofmann, J., Schmiedl, A., Sonnewald, S., et al. (2010). Transcriptome and

metabolome profiling of field-grown transgenic barley lack induced differ-

ences but show cultivar-specific variances. Proc. Natl. Acad. Sci. USA 107,

6198–6203.

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., and Bäckhed, F. (2016).
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Magnúsdóttir, S., and Thiele, I. (2018). Modeling metabolism of the human gut

microbiome. Curr. Opin. Biotechnol. 51, 90–96.
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Foetal Bovine Serum, FBS ThermoFisher Cat #10500-064 (Lot: 1096628)

Vitamin Supplement ATCC ATCC�MD-VS

Dulbecco’s- Phosphate–Buffered

Saline, D-PBS
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Collagen Invitrogen Cat #A1048301
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Methylcellulose-based media MethoCult STEMCELL Technologies H4100

Epidermal Growth Factor, EGF Biomol Ref 50349.500

Formaldehyde solution 37% Carl Roth Ref 4979.1

Basic Fibroblast Growth Factor, bFGF Miltenyi Biotec Ref 130-093-841

DMEM-F12 Westburg Ref BE12-719F/12

B27 ThermoFisher Ref 12587-010

Insulin Sigma-Aldrich Ref I9278

Glucose Sigma-Aldrich G8769

Heparin Sigma-Aldrich H3149-50KU

1% Penicillin/Streptomycin (P/S) Lonza 17-602E

Bacteria counting beads ThermoFisher C#36950

Precelly’s Glass beads (0.15-0.2 mm) Sigma-Aldrich Ref G1145

Chloroform Merck Ref 102444

Methanol hypergrade for LC-MS Merck Ref 106035

2- Ethylbutyric acid Sigma-Aldrich 109959

Hydrochloric acid 37% Sigma Aldrich 320331

Diethyl ether VWR 1.00921.1000
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Methoxyamine Hydrochloride Sigma-Aldrich 226904

N-methyl-N-trimethylsilyl-trifluoroacetamide

(MTBSTFA)

Macherey-Nagel (Interscience) 89035610

Volatile free acid mix analytical standard Sigma-Aldrich CRM46975

Critical Commercial Assays

Live/Dead Fixable Near-IR Dead Cell Stain Kit ThermoFisher L10119

Live-dead Bac Light bacterial viability Kit Life Technologies Cat #L7012

AllPrep DNA/RNA/Protein Kit QIAGEN Cat # 80004

All-in-One-Norgen Purification kit Norgen Cat #1024200

NEBNext Ultra Directional RNA Library Prep

Kit for Illumina

New England Biolabs Cat #E7420

Ribo-Zero rRNA Removal Kit (bacteria) Illumina MRZB12424

SYBR Green Supermix Biorad Ref 170-8885

SuperScript TM III First-Strand Synthesis System Invitrogen 18080051

Qubit dsDNA HS Assay Kit ThermoFisher Q32854

Deposited data

Raw Caco-2 and LGG RNA sequences NCBI’s Sequence Read

Archive (SRA)

PRJEB28403

RNA Sequencing R package/ analysis tool for

generation of data/figures represented in this paper

This paper https://git-r3lab.uni.lu/javier.ramirogarcia/

nutrihumix.git

In silico scripts for generation of data/figures

represented in this paper

This paper https://github.com/ThieleLab/CodeBase/

tree/master/Simulations_Greenhalgh_

CellMetabolism_2019

In silico scripts for drug target identification

represented in this paper

This paper https://github.com/sysbiolux/NutriHuMiX

FASTCORMICS workflow This paper https://wwwen.uni.lu/research/fstc/life_

sciences_research_unit/research_areas/

systems_biology/software

Experimental models: Cell Lines

Caco-2 cells DSMZ ACC169

Experimental models: Organism/Strains

Lactobacillus rhamnosus GG (LGG) ATCC 53103

Oligonucleotides

Primers for RNaseq validation This paper (Table S9) N/A

Software and Algorithms

MetaCore Clarivate Analytics Version 6.33 build 69110

In silico computing environment MathWorks Inc. MATLAB version 2016b

MATLAB toolbox for constraint-based modeling COBRA Toolbox https://github.com/opencobra/cobratoolbox

LGG ATCC 53013 reconstruction AGORA https://vmh.life 20.01.2017 Version 1.01.

COBRA Toolbox extensive for simulating

interspecies interactions

Microbiome Modeling Toolbox https://git.io/microbiomeModelingToolbox

In silico dietary regimens Virtual Metabolic Human

(VMH) Database

https://vmh.life

In silico dietary-specific regimens This paper https://github.com/ThieleLab/CodeBase/

tree/master/Simulations_Greenhalgh_

CellMetabolism_2019

sortmeRNA Bonsai bioinformatics Version 2.1

Subread (featureCounts) Liao et al. 2014 Version �1.5.2 http://subread.sourceforge.net/

STAR https://www.ncbi.nlm.nih.gov/

pubmed/23104886

Version 2.5.2b https://github.com/

alexdobin/STAR
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eggnog 4.5. https://academic.oup.com/nar/

article/44/D1/D286/2503059

http://eggnogdb.embl.de/#/app/home

Bowtie2 https://academic.oup.com/

bioinformatics/advance-article/

doi/10.1093/bioinformatics/

bty648/5055585

Assembly ID: ASM2650v1 Version 2.3.0.

DESeq2 1.16.1 https://genomebiology.

biomedcentral.com/articles/

10.1186/s13059-014-0550-8

http://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

Bcl2fastq Illumina Version 2.17.1.14

Drug target identification https://www.drugbank.ca/ Version 5.0.10

GraphPad Prism 7 GraphPad https://www.graphpad.com/scientific-

software/prism

FlowJo software BD Biosciences Version 10

Metabolite Detector Software https://omictools.com/metabolite-

detector-tool

v3.020151231Ra

ELDA software eld@ Version 4.12

Other

Serum bottles (500 mL) Glasgerätebau Ochs Ref # 102091

Syringe BD Biosciences Ref #309110

Aluminum Crimp Glasgerätebau Ochs Ref 102050

Discofix 3 way stopcock (Serum bottle) B.Braun Ref 4095111

HuMiX gaskets Auer precision Design V3 Ref 21689-01 /-02/ �03

Human cell membrane (pore size: 50 nm) Sigma-Aldrich (GE Healthcare) Ref WHA111703

Bacterial cell membrane (pore size: 1 mm) VWR (Whatman) Ref 515-2084

Female Luer Lock to Barb Connector Qosina 11733

Male Luer with Spin Lock to Barb Quosina 11735

Polycarbonate lids (HuMiX) University of Arizona HuMiX 1.0.

Silicone tubing VWR Cat #228-0991

Marprene tubing (0,8 mm x 1,6 mm) Watson-Marlow Cat #14 #902.0008.J16

Manifold tubing Watson-Marlow 984.0038.000 Cat # 14-284-151

Discofix 3-way stopcock B.Braun BRAU40951111

Needle (length: 25 mm; diameter: 0.60 mm) VWR (color code: blue) 613-2017

Needle (length: 50 mm; diameter: 1.50 mm) VWR (color code: red) 613-2031

Needle (length: 50 mm; diameter: 0.70 mm) VWR (color code: black) 613-2020

Aeration cannula (length: 1,10; diameter: 30 mm) VWR (B.Braun) BRAU4190050

GC glass vials Magnetic caps Chromatographie Zubehör Trott 40 11 00767 1011 23 716

Capillary column Agilent J&W GC Column DB-35MS

Anaerobic chamber MBraun Jacomex TepsLabo Edition 04/2008

Peristaltic pump Watson-Marlow Cat #205CA

Precellys� 24 homogenizer Bertin instruments PRECELLEYS 03119.200.RD000

Micro Pan Head Screw for thermoplastics Newstar Fastenings Length: 10 mm; Thread size: M2

FACSCanto II Flow cytometer BD Biosciences NA

CentriVap Concentrator 115V Labconco 79773 Rev B, ECO 9574

Hungate tube and septum VWR Ref 78100-01

GC-MS System Agilent Technologies Agilent 7890A GC coupled to an

Agilent 5975C MS

YSI Biochemistry Analyzer YSI 2950D

Bioanalyzer Agilent 2100
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Eppendorf ThermoMixer C Eppendorff Cat #5382000015

RNA-seq Illumina NextSeq500

LightCycler Instrument Roche 480
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Paul

Wilmes (paul.wilmes@uni.lu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Cell Culture
The human epithelial CRC cell line Caco-2 (DSMZ: ACC169) were maintained in aerobic conditions at 37�C at 5%CO2 in DMEM high

glucose (Sigma-Aldrich) supplemented with 20% FBS (ThermoFisher).

Primary cell culture
Primary CRC tumor colon tissue was collected from an adenoma stage III CRC male patient by the Integrated Biobank of

Luxembourg (IBBL, www.ibbl.lu) in accordance with institutional guidelines and has previously been described (Qureshi-Baig

et al., 2016). All human samples used in the scope of this work were donated freely and written informed consent was

obtained from the donor for the use of the sample for research. Ethical approval was obtained from the Comité National

d’Ethique de Recherche, Luxembourg (Reference number 201009/09). Primary CRC cell T6 were maintained in aerobic condi-

tions at 37�C in 5% CO2 in DMEM-F12 (Westburg) supplemented with 10% FBS (ThermoFisher) and 1% Penicillin/Streptomycin

(P/S; Lonza).

Bacterial cell culture
Lactobacillus rhamnosus GG (LGG) (ATCC: 53103) cultures were started from glycerol stocks kept at - 80�C and precultured over-

night in Brain Heart Infusion Broth (BHIS; Sigma-Aldrich) supplemented with 1% hemin (Sigma-Aldrich) in hungate tubes (VWR) in an

anaerobic chamber (MBraun) at 37�C, 5% CO2 and < 0.1% O2.

METHOD DETAILS

The HuMiX model
The assembly and setup steps of the HuMiX model have been described previously (Shah et al., 2016). In short, on day 1 after the

HuMiX assembly, a 1 mL suspension of Caco-2 cells (6 3 105 cells/mL) in DMEM (Sigma-Aldrich) supplemented with 20% FBS

(ThermoFisher) were injected into the epithelial chamber using a sterile disposable syringe (BD Biosciences) into the discofix

3-way stopcock (B.Braun) attached to a marprene tubing (Watson-Marlow) attached to the HuMiX inlet of the middle microchamber

(Shah et al., 2016). After injection of Caco-2 cells on day 1, cells were allowed to attach to the collagen-coated (Invitrogen) micropo-

rous membrane (Sigma-Aldrich) at 37�C. 3 hours after the inoculation of cells, the peristaltic pump (Watson-Marlow) perfused DMEM

medium at a flow rate of 25 mL min�1 into the bacterial chamber and into the lower perfusion chamber. For 7 days, Caco-2 cells were

continuously perfused with fresh DMEM medium from both apical (anaerobic medium) and basal side (aerobic medium), until a

confluent Caco-2 monolayer was established (Shah et al., 2016). The anaerobic environment in HuMiX was maintained in the micro-

bial microchamber at 0.1% by continuously bubbling the medium with dinitrogen gas. On day 7, after 24 hours preculture of LGG in

BHIB (Sigma-Aldrich) in an anaerobic hungate tube (VWR), the bacterial cells were centrifuged at 5000 rpm for 7minutes, andwashed

twice with PBS (Sigma-Aldrich). Then, 1 mL (OD�1) of anaerobic bacterial suspension in DMEM (Sigma-Aldrich) supplemented with

20% FBS (ThermoFisher) was injected into the microbial microchamber onto the mucin-coated (Sigma-Aldrich) nanoporous

membrane (VWR) as described above for human cells and the flow of the peristaltic pump continued to 25 mL min�1, 30minutes after

bacterial inoculation (Shah et al., 2016). If the bacteria were provided with the simulated HF medium, the microbial microchamber in

the HuMiXmodel was first primed for several hourswith the HFmedium, prior to the inoculation of bacteria. After a 24-hour co-culture

of Caco-2 cells and LGGand the dietary regimen, theHuMiX experiment was terminated, the devicewas disassembled, and bacterial

and human cells were collected from the microchambers (Shah et al., 2016). Two types of analyses were performed for each

contingent whereby half of the biomass was used for biomolecular extraction, and a quarter was used for cell viability and count

assessment performed by flow cytometry (BD Biosciences).
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Biomacromolecular extraction
The biomolecular extraction for both Caco-2 and LGG cells have been described previously (Roume et al., 2013) (Shah et al., 2016). In

short, Caco-2 cells were treated with a 1:1 methanol:water (v/v) solution (Merck), and polar and non-polar metabolite fractions were

separated using chloroform (Merck). These fractions (containing intracellular metabolites) were snap-frozen and stored at - 80�C until

use. The interphase containing DNA, RNA, and protein, were then processed using AllPrep DNA/RNA/Protein Kit (QIAGEN). The

microbial cells were transferred to Precellys plastic vials containing 600 mg of 0.15-0.2 mm glass beads (Sigma-Aldrich), followed

by lysis using Precelly’s Homogenizer (Bertin Instruments). After cell lysis, polar and non-polar bacterial metabolite fractions were

obtained by treatment with cold 1:3 methanol:water solution (v/v) (Merck). The bacterial interphase, including the glass beads

(Sigma-Aldrich), were snap-frozen or processed directly using an All-in-One purification kit (Norgen). After extraction, biomolecules

were stored at - 80�C until analysis.

Intracellular metabolite extraction
300 mL of the upper polar phase was transferred in technical duplicates into Gas chromatography mass spectrometry (GC/MS) glass

vials (Chromatographie Zubehör Trott) and dried overnight at - 4�C in a CentriVap (Labconco). 150 mL of the lower non-polar phase

was transferred in technical duplicates into GC/MS glass vials (Chromatographie Zubehör Trott) and dried overnight under a chem-

ical hood. All GC/MS glass vials were capped and stored at �80�C until analyses. The remainder of the polar and non-polar phases

was aliquoted in eppendorf tubes and stored at�80�C. 5-10 mL of the remainder of each sample was used for the quality control (QC)

(pooling mixture) during GC/MS analysis.

Metabolite derivatization was performed using a multi-purpose sampler (GERSTEL). Dried polar sample extracts were dissolved

in 20 mL pyridine, containing 20 mg/mL of methoxyamine hydrochloride (Sigma-Aldrich), and incubated under shaking for 120 min at

45�C. After adding 20 mL N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA; Macherey-Nagel), samples were incubated for

additional 30 min at 45�C under continuous shaking.

GC-MS analysis was performed by using an Agilent 7890B GC – 5977AMS instrument (Agilent Technologies). A sample volume of

1 mL was injected into a Split/Splitless inlet, operating in split mode (3:1) at 270�C. The gas chromatograph was equipped with a 5 m

guard column + 30m (I.D. 250 mm, film 0.25 mm)DB-35MScapillary column (Agilent J&WGCColumn). Heliumwas used as carrier gas

with a constant flow rate of 1.2 mL/min.

The GC oven temperature was held at 90�C for 1 min and increased to 270�C at 9�C/min. Then, the temperature was increased

to 320�C at 25�C/min and held for 7 min. The total run time was 30 min. The transfer line temperature was set constantly to

280�C. The mass selective detector (MSD) was operating under electron ionization at 70 eV. The MS source was held at 230�C
and the quadrupole at 150�C. Full scan mass spectra were acquired from m/z 70 to 700.

We applied an untargeted metabolic profiling approach in which the detected sample analytes were matched against an in-house

library comprised of metabolites of the central carbon metabolism, as well as amino acid degradation/biosynthesis and or other

related metabolites. Unidentified/undetected analytes are listed as ‘‘no match‘‘. All GC-MS chromatograms were processed using

theMetaboliteDetector software, v3.020151231Ra (Hiller et al., 2009). The software package supports automatic deconvolution of all

mass spectra, peak picking, integration, and retention index calibration. The following deconvolution settings were applied: Peak

threshold: 5; Minimum peak height: 5; Bins per scan: 10; Deconvolution width: 5 scans; No baseline adjustment; Minimum 15 peaks

per spectrum; No minimum required base peak intensity. Compounds were annotated by retention index and mass spectrum using

the in-house mass spectral library.

Cell viability and counting
The mucin-coated bacterial membrane was first gently washed with PBS (Sigma-Aldrich) and resuspended in MACS buffer (PBS

containing 1% BSA), then stained with the Live-dead Bac Light bacterial viability Kit (Life Technologies), followed by fixation with

3.7% Formaldehyde (Carl Roth). Quantification of bacterial cells was performed by flow cytometry (BD Biosciences) using approx-

imately a 1:100 dilution of bacterial suspension and 10 mL of bacteria counting beads (ThermoFisher) as a standard for the volume of

suspension. Caco-2 cells were stained with Live/Dead Fixable Near-IR Dead Cell Stain Kit (ThermoFisher) and fixed with 3.7% Form-

aldehyde (Carl Roth). The resulting data were analyzed using FlowJo software (BD Biosciences).

SCFAs extraction
The conditioned medium (cell-free supernatant containing soluble factors) was collected by centrifugation (4�C for 10 min at

12,000 x g) from 48-hour bacterial cultures in hungate tubes (VWR), aliquoted 5 3 750 mL into Eppendorf tubes, then snap-frozen

and stored at �80�C until analysis. The extraction protocol of the SCFAs is based on an established protocol (Moreau et al.,

2003). 20 mL of the internal standard (2-Ethylbutyric acid, c = 20 mmol/L, Sigma-Aldrich), were added to 180 mL of conditioned

medium. After acidification with 10 mL of 37% hydrochloric acid (Sigma-Aldrich), 1 mL of diethyl ether (Sigma-Aldrich) was added

and the samples were vortexed for 15 min at room temperature (Eppendorf Thermomixer). The upper organic phase was separated

by centrifugation (5 min, 21,000 x g) and 900 mL were collected in a new reaction tube. A further 1 mL of diethyl ether (Sigma-Aldrich)

was then added to the conditioned medium, and the tube was incubated and its contents separated by centrifugation. Then, 900 mL

of the organic phase were combined with the first extract, and 250 mL of this combined mixture were transferred into a GC glass vial

with micro insert (5-250 mL), in triplicate. For derivatization, 25 mL of N-tert-Butyldimethylsilyl-Nmethyltrifluoroacetamide (MTBSTFA)
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with 1% tert-Butyldimethylchlorosilane (TBDMSCI, Restek) was added, and the samples were incubated for a minimum of 1 h at

room temperature.

SCFAs measurement
GC-MS analysis was performed by using an Agilent 7890A GC – 5975C MS instrument (Agilent Technologies). A sample volume of

1 mLwas injected into a Split/Splitless inlet, operating in split mode (20:1) at 270�C. The gas chromatographwas equippedwith a 30m

(I.D. 250 mm, film 0.25 mm) DB-5MS capillary column (Agilent J&W GC Column). Helium was used as carrier gas with a constant flow

rate of 1.4 mL/min.

The GC oven temperature was held at 80�C for 1 min and increased to 150�C at 10�C/min. Then, the temperature was increased

to 280�C at 50�C/min (post run time: 3 min). The total run time was 15 min. The transfer line temperature was set to 280�C. The mass

selective (MS) detector was operating under electron ionization at 70 eV. The MS source was held at 230�C and the quadrupole at

150�C. The detector was switched off during elution of MTBSTFA. For precise quantification, GC/MS measurements of the

compounds of interest were performed in selected ion monitoring mode.

All GC-MS chromatograms were processed as described above.

Lactate measurement
Lactate from the LGG conditioned medium in either simulated HF or REF medium, as described above, were measured using a YSI

Biochemistry Analyzer (YSI).

RNA library preparation for Caco-2 and LGG
Sequencing library preparation was performed using a NEBNext, Ultra Directional RNA Library Prep Kit (NewEngland Biolabs) using

500 ng of total RNA isolated from LGG or Caco-2 cells cocultured inside HuMiX under the described media conditions. Briefly, for

bacterial RNA samples, ribosomal RNA depletion was carried out using a Ribo-Zero rRNA Removal Kit (bacteria) (Illumina) according

to the manufacturer’s protocol. Ribo-depleted RNA was purified using magnetic beads, resuspended into 5 mL of TE (Tris-EDTA)

buffer and further processed for library preparation according to chapter 3 of the NEBNext, Ultra Directional RNA Library Prep Kit

(NewEngland Biolabs) protocol booklet. The sequencing libraries for the Caco-2 RNA samples were prepared according to the

protocol provided in chapter 2 of the NEBNext, Ultra Directional RNA Library Prep Kit (NewEngland Biolabs). The libraries were quan-

tified using a Qubit dsDNA HS Assay Kit (ThermoFisher), and quality was determined using the bioanalyzer (Agilent). Pooled libraries

were sequenced on a NextSeq500 sequencer using 23 75 cycle reaction chemistry. FASTQ file generation and demultiplexing were

performed using bcl2fastq (Illumina).

Simulated media preparation
Two types of simulated dietary regimens were used in our study. The high-fiber (HF) medium is amodification from the simulated ileal

environment medium (SIEM) (Gibson et al., 1988). SIEM medium contained 47 g/L bactopeptone (BD Biosciences), 78.4 g/L potato

starch (Sigma-Aldrich), 9.4 g/L xylan (Sigma-Aldrich), 9.4 g/L arabinogalactan (Sigma-Aldrich), 9.4 g/L amylopectin (Sigma-Aldrich),

9.4 g/L pectin (Sigma-Aldrich), 3 g/L casein hydrosylate (Sigma-Aldrich), 0.8 g/L dehydrated bile (Sigma-Aldrich), and 4 g/L soy

(Frutarom). All components were dissolved in distilled water with the help of a magnetic stirrer and heat (120�C). The medium was

autoclaved at 121�C, and 10 mL/L trace minerals (ATCC), 10 mL/L Vitamin mix (ATCC), menadione (Sigma-Aldrich) and 100 mM

cysteine HCl (Sigma-Aldrich) were filter-sterilized and added to the autoclaved medium. Menadione was dissolved (1 mg/mL) in

DMSO (Sigma-Aldrich) prior to being added to the medium. After achieving complete homogeneity, the pH was adjusted to 7.0 using

HCl and NaOH (Sigma-Aldrich). The medium was conserved in 50 mL aliquots at - 20�C until use. Before use, the medium was

thawed at 37�C, transferred to a serum bottle with a rubber stopper (VWR), and made anoxic by 48 hour incubation in an anaerobic

chamber (M.Braun). The no-dietary-fiber medium, termed the reference (REF) medium, was Dulbecco’s Modified Eagle’s medium

(DMEM) (Sigma-Aldrich) supplemented with 20% FBS (ThermoFisher), as it provides the basic requirements for culture of both

Caco-2 cells and LGG (Shah et al., 2016).

Sphere and 3D colony formation assays
Self-renewal capacity was assessed with sphere formation assays, as previously described (Qureshi-Baig et al., 2016). Briefly,

primary CRC cells T6 (IBBL) and Caco-2 cells were seeded at different densities (e.g., 1, 2, or 3 cells per well), and after 10 days

of culture, the resulting spheroids were counted and measured under a microscope. Extreme limiting dilution analysis (ELDA) soft-

ware (Hu and Smyth, 2009) was used to determine the self-renewal capacity after a given treatment. 3D colony formation was

assessed by resuspending the cells in a serum-free a mix of 60% Sphere Culture Medium (SCM) (Qureshi-Baig et al., 2016) and

40%methylcellulose medium, i.e., MethoCult�H4100 (STEMCELL Technologies) medium, supplemented with 20 ng/mL Epidermal

Growth Factor (EGF; Biomol) and 20 ng/mL basic fibroblast growth factor (bFGF; Miltenyi Biotec). The SCMmedium was composed

of DMEM-F12 (Westburg), 20 mL/mL of B27 (ThermoFisher), 2 mL/mL of insulin (Sigma-Aldrich), 3.4 mL/mL of glucose (Sigma-Aldrich),

4 mg/mL of heparin (Sigma-Aldrich), and 10 mL/mL of 1% P/S (Lonza). 250 cells per well (per 35 mm dish) were seeded. The resulting

colonies were counted after 14 days, using an inverted microscope.
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qRT-PCR validation
cDNA synthesis was performed on Caco-2 RNA samples from HuMiX using the Superscript Synthesis kit (Invitrogen). qRT-PCR was

performed on abcc3, abca5, abcc2, cox-2, traf6, and c-Jun using SYBR Green Supermix (Bio-Rad) and processed according to the

protocol booklet using HPRT1 and GAPDH as housekeeping genes. The primer sequences can be found in Table S9. Thermocycling

parameters were 95�C (5min; denaturing step), followed by amplification 95�C (15 s), 60�C (40 s), and 72�C (30 s). A total of 50 cycles

were performed. Reactions were performed on LightCycler Instrument (Roche).

In silico model predictions
Simulations were performed in MATLAB version 2016b (MathWorks, Inc.) using the COBRA Toolbox 3.0, version 31.05.2018 (Heir-

endt et al., 2019) (https://opencobra.github.io/). Computationally efficient flux variability analysis (Gudmundsson and Thiele, 2010)

was performed with the IBM CPLEX (IBM, Inc.) solver. A context-specific COAD model was reconstructed using the human

genome-scale metabolic reconstruction Recon2 (Thiele et al., 2013) and data from the TCGA dataset, an adaptation of the

FASTCORMICS workflow for RNA-seq data (Vlassis et al., 2014). The uptake reactions of Recon2 were first constrained in relation

of the media composition. Then, FASTCC (Vlassis et al., 2014) was run to remove any inconsistent reactions. The medium-

constrained Recon 2 model and the expression data from COAD patients from the TCGA dataset were used as input for a modified

version of FASTCORMICS workflow (Pacheco et al., 2015) that allows processing of RNA-Seq datasets.

In silico diet-host-bacteria reconstruction
The COAD and LGG model were constructed using the createMultiSpeciesModel function in the Microbiome Modeling Toolbox

(Baldini et al., 2018) which was implemented in the COBRA Toolbox (Heirendt et al., 2019). Briefly, the two models were joined

through a shared compartment representing the intestinal lumen, which enabled cross-feeding and served as an inlet for the simu-

lated medium and an outlet for the secretion of metabolic end products. The fluxes through all metabolic and transport reactions in

each joined model were coupled to the flux through its biomass objective function (Heinken et al., 2013). The models were contex-

tualized as follows: (i) Growth rates calculated from cell counts measured in vitro were used as lower and upper bounds on the

respective species’ biomass objective functions in the conditions with experimental data available. If cell count measurements for

Caco-2 were not available, a growth rate of 0.01 h-1 was assumed. (ii) Semiquantitative measurements for acid production by

LGG in a single culture were integrated by enforcing the ratio between acetate and formate production to the measured ratios (iii).

The respective medium (HF or REF) was implemented as constraints on the exchange reactions to the lumen compartment, which

represents the apical side of HuMiX. In each simulation including the human cell, the DMEM medium was additionally implemented

as constraints on the body fluid exchange reactions, which represent the basal side of HuMiX. Uptake of O2 by COAD cells was

allowed by setting the lower bounds on the body fluid O2 exchange reaction to �100. To ensure anoxic conditions on the luminal

side, O2 uptake via the lumen compartment was prevented by setting the lower bound on the lumen O2 exchange reaction to

zero. The reference and simulated HF media were adapted as in silico constraints by translating the dietary components into the

corresponding Virtual Metabolic Human (https://vmh.life) metabolite identifiers and estimating the uptake rates based on the

in vitro composition (Noronha et al., 2019). Scripts used to perform simulations are provided in https://github.com/ThieleLab/

CodeBase/tree/master/Simulations_Greenhalgh_CellMetabolism_2019.

Drug target identification
For the drug target identification, a pipeline was established that automatically retrieved gene and drug interactions as well as their

relation to cancer (Adapted from (Pacheco et al., 2015)). The pipeline retrieves data from selected databases and was implemented in

MATLAB 2017b. As input, a list of Ensembl identifiers (or other) is sufficient. The pipeline converted the Ensembl identifiers into the

official gene symbol as well as UniProt identifier. A list of corresponding IDs can be retrieved from the HUGO Gene Nomenclature

Committee website (available at https://www.genenames.org/cgi-bin/download) and Biomart (provided by Ensembl, available at

http://www.ensembl.org/biomart/martview/). The UniProt identifiers were then used to retrieve drug target information from the

DrugBank (Release Version 5.0.10 available at https://www.drugbank.ca/), a freely accessible database that contains information

on more than 10,510 drugs as well as their targets. The urlread command from MATLAB 2017b allowed to search for each UniProt

identifier (by combining the website URL with the UniProt identifier) in the DrugBank in order to read the source code and to extract

the names and BE identifiers using regular expression (regexpi command). The process was repeated using the BE identifiers to

retrieve protein-drug associations along with the drug name, the drug group (e.g., approved, experimental, nutraceutical, illicit,

withdrawn, and investigational), actions (e.g., inhibitor, substrate, activator, and inducer) and, most importantly, the drug identifiers.

The pipeline then retrieved, for each drug identifier (using the same approach), information on the drugs, such as drug categories and

KEGGdrug identifiers for pathway extraction using regular expression on the source code. TheKEGG identifiers (http://www.genome.

jp/dbget-bin/www_bget?drug:D02368) were used to retrieve human-related pathways. In the last step, cancer drug databases and

other online resources were downloaded from different sources including cancer.gov (maintained by the National Cancer Institute,

available at https://www.cancer.gov/about-cancer/treatment/drugs), Chemocare (reviewed by the Cleveland Clinic and community

resources, available at http://chemocare.com/chemotherapy/drug-info/default.aspx), CenterWatch (information about clinical trials

and FDA approved drugs, available at https://www.centerwatch.com/drug-information/fda-approved-drugs/therapeutic-area/12/

oncology), NavigatingCare (mostly patient based, available at https://www.navigatingcare.com/library/all/chemotherapy_drugs),
Cell Reports 27, 1621–1632.e1–e9, April 30, 2019 e7

https://opencobra.github.io/
https://vmh.life
https://github.com/ThieleLab/CodeBase/tree/master/Simulations_Greenhalgh_CellMetabolism_2019
https://github.com/ThieleLab/CodeBase/tree/master/Simulations_Greenhalgh_CellMetabolism_2019
https://www.genenames.org/cgi-bin/download
http://www.ensembl.org/biomart/martview/
https://www.drugbank.ca/
http://www.genome.jp/dbget-bin/www_bget?drug:D02368
http://www.genome.jp/dbget-bin/www_bget?drug:D02368
http://cancer.gov
https://www.cancer.gov/about-cancer/treatment/drugs
http://chemocare.com/chemotherapy/drug-info/default.aspx
https://www.centerwatch.com/drug-information/fda-approved-drugs/therapeutic-area/12/oncology
https://www.centerwatch.com/drug-information/fda-approved-drugs/therapeutic-area/12/oncology
https://www.navigatingcare.com/library/all/chemotherapy_drugs


SEER*Rx (antineoplastic drug database maintained by the National Cancer Institute, available at https://seer.cancer.gov/tools/

seerrx/) and Cancer Research UK (a cancer research and awareness charity, available at http://www.cancerresearchuk.org/

about-cancer/cancer-in-general/treatment/cancer-drugs/drugs). Then, regular expression was used to compare the drug names

generated by the pipeline and the downloaded resource.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details of the in vitro experiments are described in the figure legends. Additional descriptions of software, packages and

algorithms employed for the analysis of RNA sequencing data and in silico simulations are described below:

Intracellular metabolomics analysis
Because we could not assume equal variances for both conditions (simulated HF regimen versus REF medium, +/� LGG) and to

increase the statistical power by taking into consideration Type 1 as well as Type 2 error rates, we applied the Welch’s t test for

metabolomics data analysis (Ruxton, 2006). The Welch t test provides more robustness to an analysis than the regular Student t

test, and thus, the Welch t test is commonly applied in metabolomics datasets (Kogel et al., 2010; Theriot et al., 2014). Statistical

analyses were performed separately by comparing dietary regimen (HF versus REF) and dietary regimen + LGG (HF + LGG versus

REF + LGG). Bacterial intracellular metabolites were analyzed by comparing HF + LGG versus REF + LGG. A P value of less than 0.05

was considered significant for all analyses. Metabolite replicates with one ‘no match’ hit technical replicate were removed from the

dataset. A total of 155 metabolites were detected in Caco-2 cells in each condition. 50 statistically significant metabolites were iden-

tified in HF-exposed versus REF-exposed Caco-2 cells (See also Table S1); 44 statistically significant metabolites were identified

when Caco-2 cells were exposed to HF + LGG versus REF + LGG (See also Table S5); 33 statistically significant metabolites

were identified in LGG when exposed to HF versus REF medium (See also Table S4).

SCFA quantification
For SCFAs absolute quantification, an external calibration curve (10, 25, 50,100, 250, 500, 1000, 2000, 4000 mmol/L) using a volatile

free acid mix (Sigma-Aldrich) including all compounds of interest was prepared, extracted, and derivatized as described above. A

total of four volatile acids were measured in the LGG spent medium: Acetic acid, butyric acid, formic acid, and propionic acid.

The absolute quantification of each metabolite produced by LGG was performed in the medium with background subtraction

from fresh medium and normalized to cell count.

In silico analysis
Simulations were performed on the two dietary regimens for (i) the COAD model, (ii) the LGG model, and (iii) the joint COAD/LGG

model. In each of these six conditions, the minimal and maximal fluxes through each reaction were computed using a computation-

ally efficient flux variability analysis (Gudmundsson and Thiele, 2010). For each reaction, the flux span was calculated, which is the

absolute distance between the computed minimal and maximal flux values. The minimal and maximal fluxes for each reaction were

plotted in MATLAB. The predicted secretion into the body fluids and lumen were visualized using the pheatmap and RColorBrewer

functions in R version 3.3.2 (R Core Team, 2016). Heatmaps were generated with the Euclidian distance measure for clustering rows

and columns, and complete linkage as the hierarchical clustering method. Reactions with at least a 20% difference in flux span

between conditions were plotted. The thicknesses of the lines per reaction were scaled to fold changes in the flux spans between

conditions.

RNA-sequencing analysis
To ensure complete removal of all rRNA in the bacterial samples, we performed in silico rRNA depletion using sortmeRNA (Bonsai

Bioinformatics) (Kopylova et al., 2012). For the human samples, rRNA depletion was not performed as only mRNAs were sequenced.

The rRNA depletion was required only for the bacterial samples, as rRNA made up 85% of the total RNA, to avoid that all other RNA

classes aremasked (Rosenow et al., 2001; Scott et al., 2010). The remaining reads weremapped to the LGG reference genome using

bowtie2 (BOWTIE) (Langmead and Salzberg, 2012) with a default setting at the very-sensitive-local mode. The reference genomewas

reannotated using eggnog-mapper based on eggNOG 4.5 orthology data (Huerta-Cepas et al., 2017), and gene counts were strand

based, applying an in-house script.

Differential expression analysis
The DESeq2 (1.16.1) (Anders and Huber, 2010) package from R (3.4.1) (R Core Team, 2016) was used to identify genes that were

differentially expressed (DE) due to dietary regimen. In a similar approach, Caco-2 transcriptomic datasets were aligned against

the Ensembl human genome reference (release-87) using the STAR (2.5.2b) aligner (Dobin et al., 2013) with default parameters,

except for chimSegmentMin, which was set to 20 to switch on the detection of chimeric alignments. A GTF file (release-87)

with the annotated transcripts was also provided to increase the accuracy of the alignments. Gene counts were calculated using

featureCounts (v1.5.2) (Liao et al., 2014), requiring both ends to be mapped as well as strand specificity. To filter out genes that

could be derived from spurious mapping, only genes that collected at least 0.0001% of the reads for a minimum of two samples
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from the same condition were retained. Generalized linear models were applied to calculate the differential gene expression

and statistical significance per dietary regimen, type of culture (monoculture or coculture) and their interaction using DESeq2

(Anders and Huber, 2010). Figures for LGG and Caco-2 transcriptomic analysis were generated using the R packages gplots,

superheat, ggplot2 and tidyverse.

Pathway enrichment analysis
Pathway enrichment analysis on the Caco-2 differentially expressed gene list (simulated HF regimen versus REF medium, and HF +

LGG versus REF + LGG) was performed using MetaCore (Clarivate Analytics), using only the statistically significant genes as a

sorting method. DE genes with an absolute log2-fold change value higher than 1 and an adjusted P value lower than 0.05 were

used as a sorting method for Caco-2 cells. LGG pathway and module enrichment was performed using the R packages KEGGREST

(Tenenbaum, 2017) and stats (RCore Team, 2017) (hypergeometric distribution function). Figures for LGGandCaco-2 transcriptomic

analysis were generated with the R packages gplots, superheat, ggplot2 and tidyverse.

DATA AND SOFTWARE AVAILABILITY

All metabolomic data aswell as the output files from the pathway analysis are freely available in Supplemental Files. Transcriptomic raw

sequences are available at NCBI’s Sequence Read Archive (SRA) under Project PRJEB28403. The transcriptomic analyses codes are

available on github (https://git-r3lab.uni.lu/javier.ramirogarcia/nutrihumix.git). All in silico scripts are publicly available and can be found

in the repository under https://github.com/ThieleLab/CodeBase/tree/master/Simulations_Greenhalgh_CellMetabolism_2019. The

AGORA (Magnúsdóttir et al., 2017) reconstruction of LGG ATCC 53103 (version 1.01) is available on https://vmh.life 20.01.2017.

The drug prediction codes are publicly available and can be found in the repository under https://github.com/sysbiolux/NutriHuMiX.

The FASTCORMICS workflow is available under https://wwwen.uni.lu/research/fstc/life_sciences_research_unit/research_areas/

systems_biology/software.
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Figure S1 

 
 
Figure S1, related to Figure 1. The non-compatibility of a simulated HF regimen in cell culture assays. 
(A) The transepithelial electrical resistance (TEER) measured with the standard Transwell system. Data represents 
Caco-2 cells exposed to the simulated HF regimen (turquoise) or the REF medium (red) (shown in color key).  
(B) Effect of exposure to HF or REF medium (red) on Caco-2 cell self-renewal capacity. Representative assays 
validated performing three independent experiments (shown as the mean of technical replicates with 95% 
confidence interval, Chi-square test).  
(C) Effect of exposure to HF or REF medium (red) on 3D colony formation of Caco-2 cells. Representative figure of 
three independent experiments in technical triplicates; data are presented as the mean ± SD.  
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Figure S2 

 
Figure S2, related to Figure 1 and 2. The effect of two dietary regimens +/-probiotic LGG on Caco-2 cells. 
(A) Relative intracellular lactate concentrations in Caco-2 cells after co-culture with simulated HF regimen versus 
REF medium. Data are shown as mean ± SEM and are based on technical duplicates and three REF and two HF 
independent HuMiX experiments, respectively. P-values were calculated using the Welch t-test. 
(B) Relative gene expression of lactate importer mct1 and exporter mct4 in Caco-2 cells after co-culture with 
simulated HF regimen versus REF medium. Data are shown as mean ± SEM for three independent HuMiX 
experiments. Colors indicate sample type (shown in color key). Abbreviations: Monocarboxylate transporter 
(MCT). Differentially expression analysis was performed using the Wald test implemented in DESeq2 with 
Benjamini-Hochberg multiple testing correction at 0.05 significance (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 
0.0001).  
(C) In silico-predicted molecules for four specific pathways of the virtual metabolic human (VMH) website. Flux 
spans are indicated in mmol per gram dry weight per hour (mmol gDW-1hr-1). 
(D, E, F and G) Cells were counted and viability was assessed with flow cytometry and precision count beads. The 
cell count was determined by gating on beads (Materials and Methods). Error bars represent standard deviation and 



	

the results were obtained from a minimum of four independent HuMiX experiments. P-values were calculated using 
the Student t-test; *p < 0.05; ns, not significant. 
(D and E) Caco-2 cell count in millions (C) and viability in % (D). Cells were stained with live/dead stain 
(Materials and methods). 
(F and G) LGG viability in % (F) and cell count in billions (G). Cells were stained with Syto9 and counted using 
negative counting beads (Materials and methods). 
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