309 research outputs found

    Investigating the Associations among Overtime Work, Health Behaviors, and Health: A Longitudinal Study among Full-time Employees

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com Background It has often been suggested that high levels of overtime lead to adverse health outcomes. One mechanism that may account for this association is that working overtime leads to elevated levels of stress, which could affect worker’s behavioral decisions or habits (such as smoking and lack of physical activity). In turn, this could lead to adverse health. Purpose The present study examined this reasoning in a prospective longitudinal design. Data from the prospective 2-year Study on Health at Work (N=649) were used to test our hypotheses. Methods Structural equation analysis was used to examine the relationships among overtime, beneficial (exercising, intake of fruit and vegetables) and risky (smoking and drinking) health behaviors, and health indicators (BMI and subjective health). Results Working overtime was longitudinally related with adverse subjective health, but not with body mass

    Exploring working conditions as determinants of job satisfaction: an empirical test among Catalonia service workers

    Get PDF
    Job satisfaction is particularly important in the service industry since it involves direct contact with customers and thus has a direct influence on company performance. We analyzed the impact of ten working conditions on job satisfaction by means of structural equation modelling in a representative stratified random sample of 1553 service sector employees in Catalonia (Spain). We found significant effects in social aspects (recognition of a job well done and social support), followed by psychological loads (emotional demands and job insecurity) and by task contents (development & meaning and predictability). These variables explained 50% of the variance in job satisfaction

    Burnout in Organizational Life

    Get PDF
    Burnout is a psychological response to work stress that is characterized by emotional exhaustion, depersonalization, and reduced feelings of personal accomplishment. In this paper, we review the burnout literature from 1993 to present, identifying important trends that have characterized the literature. We focus our attention on theoretical models that explain the process of burnout, the measurement of burnout, means of reducing burnout, and directions for the future of burnout research.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Gaia Data Release 2: The astrometric solution

    Get PDF
    Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these results performed within the astrometry task. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G<14 mag) sources, 0.1 mas at G=17 mag, and 0.7 mas at G=20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas/yr, respectively. The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas/yr. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas/yr in proper motion are seen on small (<1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices.Includes STFC
    corecore