24 research outputs found

    Sorption of heavy metal ions by glass beads-immobilized calix[4]arenes derivative

    Get PDF
    Glass beads (GB) immobilized, 5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-dihydroxycalix[4]arene (CA) are prepared and used as a new sorbent in sorption study of removal heavy metal ions. A calixarene derivative bonded to amino-functionalized glass beads sorbent was synthesized via a self assembly technique for sorbent of selected heavy metal ions in aqueous. In order to absorb selected heavy metal ions in aqueous, a calixarene derivative bonded to amino-functionalized glass beads sorbent was synthesized via a self assembly technique. The sorbent which is named GB-APTS-CA was characterized using infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), elemental analysis and thermal analysis (TGA/DTG). The influences of some experimental parameters including pH of the sample solution, weight of sorbent, concentration and temperature have been investigated. The sorption data were evaluated using the Langmuir, Freundlich and Dubinin Radushkevich (D-R) isotherm. The obtained maximum sorption capacity for Cu(II), and Pb(II) is 0.06 mmol g−1 and 0.02 mmol g−1, respectively. Thermodynamic parameters such as the standard free energy change (ΔG○), enthalpy change (ΔH○) and entropy change (ΔS○) were calculated to determine the nature of sorption process. Thus, GB-APTS-CA is favorable and useful for the removal of Cu(II) and Pb(II) metal ions

    The Mechanism of Heavy Metal Biosorption on Green Marine Macroalga Enteromorpha linza

    No full text
    The biosorption mechanism of divalent Ni(II), Cd(II), and Pb(II) ions onto calcium treated Entemorpha linza was investigated as a function of pH, contact time, biomass dose, and temperature. The experimental data were evaluated by Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The uptake capacity of the tested metal ions was markedly influenced by pH in the range of 2-3.5 and maximum rates were observed at pH 5-5.5. The kinetics of the metal ions adsorption were rather rapid, with 90% of adsorption occurring within 10min. In addition to batch sorption tests, the functional groups on the cell wall matrix of the biomass were revealed by potentiometric titration data and Fourier transform infrared analysis. The relative contribution of the chemical groups involved in metal biosorption such as carboxyl, amino, sulfonate was evaluated to characterize their binding mechanisms using these instrumental techniques. The density of strong and weak acidic functional groups in the biomass was found to be 0.25 and 0.95mmolg(-1) biomass, respectively. In conclusion, the present work showed that the marine algae E. linza could be used as a potentially cost-effective biosorbent for the treatment of complex wastewater containing heavy metals

    Cadmium Tolerance and Removal from Cunninghamella elegans Related to the Polyphosphate Metabolism

    Get PDF
    The aim of the present work was to study the cadmium effects on growth, ultrastructure and polyphosphate metabolism, as well as to evaluate the metal removal and accumulation by Cunninghamella elegans (IFM 46109) growing in culture medium. The presence of cadmium reduced growth, and a longer lag phase was observed. However, the phosphate uptake from the culture medium increased 15% when compared to the control. Moreover, C. elegans removed 70%–81% of the cadmium added to the culture medium during its growth. The C. elegans mycelia showed a removal efficiency of 280 mg/g at a cadmium concentration of 22.10 mg/L, and the removal velocity of cadmium was 0.107 mg/h. Additionally, it was observed that cadmium induced vacuolization, the presence of electron dense deposits in vacuoles, cytoplasm and cell membranes, as well as the distinct behavior of polyphosphate fractions. The results obtained with C. elegans suggest that precipitation, vacuolization and polyphosphate fractions were associated to cadmium tolerance, and this species demonstrated a higher potential for bioremediation of heavy metals
    corecore