800 research outputs found

    Role of Human-Induced Pluripotent Stem Cell-Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System

    Get PDF
    The ability to generate human-induced pluripotent stem cell (hiPSC)-derived neural cells displaying region-specific phenotypes is of particular interest for modeling central nervous system biology in vitro. We describe a unique method by which spinal cord hiPSC-derived astrocytes (hiPSC-A) are cultured with spinal cord hiPSC-derived motor neurons (hiPSC-MN) in a multielectrode array (MEA) system to record electrophysiological activity over time. We show that hiPSC-A enhance hiPSC-MN electrophysiological maturation in a time-dependent fashion. The sequence of plating, density, and age in which hiPSC-A are cocultured with MN, but not their respective hiPSC line origin, are factors that influence neuronal electrophysiology. When compared to coculture with mouse primary spinal cord astrocytes, we observe an earlier and more robust electrophysiological maturation in the fully human cultures, suggesting that the human origin is relevant to the recapitulation of astrocyte/motor neuron crosstalk. Finally, we test pharmacological compounds on our MEA platform and observe changes in electrophysiological activity, which confirm hiPSC-MN maturation. These findings are supported by immunocytochemistry and real-time PCR studies in parallel cultures demonstrating human astrocyte mediated changes in the structural maturation and protein expression profiles of the neurons. Interestingly, this relationship is reciprocal and coculture with neurons influences astrocyte maturation as well. Taken together, these data indicate that in a human in vitro spinal cord culture system, astrocytes support hiPSC-MN maturation in a time-dependent and species-specific manner and suggest a closer approximation of in vivo conditions

    Role of the Small GTPase Rho3 in Golgi/Endosome Trafficking through Functional Interaction with Adaptin in Fission Yeast

    Get PDF
    BACKGROUND: We had previously identified the mutant allele of apm1(+) that encodes a homolog of the mammalian ”1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+), which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(-) sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-), and valproic acid. Green fluorescent protein (GFP)-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence of a direct link between the small GTPase Rho and the clathrin-associated adaptor protein-1 in membrane trafficking

    Color Categorization Independent of Color Naming

    Get PDF
    Color is continuous, yet we group colors into discrete categories associated with color names (e.g., yellow, blue). Color categorization is a case in point in the debate on how language shapes human cognition. Evidence suggests that color categorization depends on top-down input from the language system to the visual cortex. We directly tested this hypothesis by assessing color categorization in a stroke patient, RDS, with a rare, selective deficit in naming visually presented chromatic colors, and relatively preserved achromatic color naming. Multimodal MRI revealed a left occipito-temporal lesion that directly damaged left color-biased regions, and functionally disconnected their right-hemisphere homologs from the language system. The lesion had a greater effect on RDS’s chromatic color naming than on color categorization, which was relatively preserved on a nonverbal task. Color categorization and naming can thus be independent in the human brain, challenging the mandatory involvement of language in adult human cognition

    Novel regulators of human gonadal development

    Get PDF
    The production of viable germ cells during human embryonic development determines adult reproductive success. This is particularly true for females, as development of germ cells (GCs) into primordial follicles before birth is imperative for future fertility. During fetal development GCs migrate to the genital ridge to form the gonad, after which several tightly regulated events, including proliferation, differentiation, and association with somatic cells, must occur to form a functional gonad. In the ovary these processes also include the initiation and subsequent arrest of meiosis. These developmental processes are orchestrated by local autocrine and paracrine factors, many of which remain to be identified in the human. In order to decipher further the pathways by which the gonad and GCs develop, potential regulators including prostaglandin (PG) E2, the interleukin (IL)6-type cytokines, and the prokinetecins (PROKs), were examined in the human fetal ovary and PROKs in the human fetal testis. Patterns of gene expression, protein localisation, function, and interaction of the potential mediators throughout human development (8-20 weeks gestation) were determined. Primary fetal tissue was investigated, in addition to immortalized GCs (T-Cam2 cells) and a murine model of fetal ovarian development. PGE2 interacts with known regulators of GC development in non-reproductive organs. It was postulated PGE2 may regulate GC progression by modulating these factors. Examination of PGE2 receptors and precursor enzymes in the fetal ovary revealed that all were present and some were developmentally regulated, with mRNA expression increasing with gestation. These developmentally regulated components were localised to the GCs. The PGE2 receptors were among those differentially expressed, with one localised solely to mature GCs. Culture of human fetal ovary confirmed that PGE2 regulates known regulators of GC development, increasing expression of survival and anti-apoptotic factors. To test the hypothesis that PGE2 is necessary for female GC development, paracetamol, an inhibitor of PGE2 precursor enzymes, was utilised in a murine model of fetal exposure. Fetal ovaries from this experiment displayed disruption of normal development. The IL6-type cytokines are also postulated to be involved in early gonad development, and are known to regulate proliferation and differentiation of mouse embryonic stem and GCs in vitro. A significant increase in transcript levels of the shared receptor components was determined in second trimester human ovaries, as well as developmental increases of several of the IL6-type ligands. Both common receptor components were located specifically in the GCs identifying them as the target of IL6 action in the human fetal ovary. The PROKs regulate cell migration, proliferation and differentiation, and modulate secretion of PGE2 and expression of some IL6-type cytokines. To-date, PROKs have not been examined in the human fetal gonad. Transcript levels were higher in the fetal testis compared to the ovary, with receptor and ligand components increasing with gestation. Most components also increased with gestation in the ovary. However, location of PROK components was strikingly different between the two tissues, with GCs being the primary target of PROK action in the fetal ovary, and Leydig and interstitial cells being the target in the testis. PROKs interaction with other regulators of gonad development was examined utilising a GC line in the case of the ovary and primary interstitial cell cultures in the case of the testis. These studies have identified new factors involved in human fetal gonad development, and how they interact with known regulatory pathways of development

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    • 

    corecore