386 research outputs found

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO

    Measurement of jet fragmentation into charged particles in pp and PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    Jet fragmentation in pp and PbPb collisions at a centre-of-mass energy of 2.76 TeV per nucleon pair was studied using data collected with the CMS detector at the LHC. Fragmentation functions are constructed using charged-particle tracks with transverse momenta pt > 4 GeV for dijet events with a leading jet of pt > 100 GeV. The fragmentation functions in PbPb events are compared to those in pp data as a function of collision centrality, as well as dijet-pt imbalance. Special emphasis is placed on the most central PbPb events including dijets with unbalanced momentum, indicative of energy loss of the hard scattered parent partons. The fragmentation patterns for both the leading and subleading jets in PbPb collisions agree with those seen in pp data at 2.76 TeV. The results provide evidence that, despite the large parton energy loss observed in PbPb collisions, the partition of the remaining momentum within the jet cone into high-pt particles is not strongly modified in comparison to that observed for jets in vacuum.Comment: Submitted to the Journal of High Energy Physic

    Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions

    Get PDF
    Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell--based biorefineries.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the strategic funding of UID/BIO/04469/2013 unit, MIT Portugal Program (Ph.D. grant PD/BD/128247/ 2016 to Joana T. Cunha), Ph.D. grant SFRH/BD/130739/2017 to Carlos E. Costa, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004), YeasTempTation (ERA-IB-2-6/0001/2014), and MultiBiorefinery project (POCI-01-0145-FEDER-016403). Funding by the Institute for Bioengineering and Biosciences (IBB) from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) was also receiveinfo:eu-repo/semantics/publishedVersio

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for quark compositeness in dijet angular distributions from pp collisions at √s̅ = 7 TeV

    Get PDF
    Peer reviewe
    • …
    corecore