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Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries.
Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the
release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae
is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-
derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures
required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast
response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve
yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main
inhibitors derived from diverse rawmaterial resultants from different biomass pretreatments, and describes the main mechanisms
of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature
conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of
tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically
relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of
sustainable yeast cell–based biorefineries.
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Introduction

Depletion of fossil resources and environmental concerns re-
lated to their exploitation promote the transition of petroleum-
based refinery towards a bio-based economy. The bioeconomy
aims at the manufacturing of products and fuels from renew-
able materials using efficient biotechnologies, contributing to
the creation of new jobs and industries.

Lignocellulosic biomass is the most available renewable
resource on earth and may be used for the production of liquid
biofuels, such as bioethanol. Nevertheless, the large-scale

production of lignocellulosic bioethanol is not extensively im-
plemented due to the elevated initial investment and opera-
tional costs related to the process. For instance, a physico-
chemical pretreatment is required to break down the recalci-
trant and complex structure of lignocellulosic biomass to ob-
tain fermentable sugars, significantly increasing the complex-
ity and length of the process. Several strategies have been
considered to reduce capital costs such as the use of whole
slurry (liquid and solid phases) or slurries after pretreatment,
to eliminate unnecessary washing steps, and operating at high
solid loading, to reduce distillation costs (Romaní et al. 2014).
Moreover, the use of all sugars present in the hemicellulosic
fraction is also required for cost-effective lignocellulosic eth-
anol production. Xylose is the most abundant sugar in the
hemicellulosic fraction; however, Saccharomyces cerevisiae,
the preferred microorganism for bioethanol production, is not
naturally capable of metabolizing this sugar. Considering this,
several efforts have been applied in the last years for the de-
velopment of S. cerevisiae strains capable of xylose consump-
tion through the expression of heterologous pathways, such as
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xylose reductase and xylitol dehydrogenase (XR/XDH) from
Pichia stipitis, or of xylose isomerases (XIs) from different
bacterial and fungal species (Moysés et al. 2016). Both path-
ways convert xylose into xylulose, which is subsequently
phosphorylated into xylulose-5P and then further metabolized
in the pentose phosphate pathway (PPP).

Nevertheless, the hemicellulosic fraction (liquid phase) also
contains toxic compounds, in concentrations dependent of pre-
treatment severity, which are inhibitors of the subsequent sac-
charification and fermentation steps (Modenbach and Nokes
2012). These inhibitory compounds are weak acids, furans,
and phenolic compounds. Acetic acid is the most abundant
weak acid in lignocellulosic hydrolysates and is present due
to the deacetylation of acetyl groups linked to themain chain of
hemicelluloses. Other weak acids, such as formic and levulinic
acids, can also be present in hydrolysates resulting from furan
compound degradation. Furfural and hydroxymethylfurfural
(HMF) are produced by dehydration of pentoses and hexoses,
respectively. On the other hand, phenolic compounds (such as
syringic acid, vanillin, ferulic acid, vanillic acid, and coumaric
acid) are produced by depolymerization of lignin. The amount
of inhibitory compounds in the lignocellulosic hydrolysates is
dependent on lignocellulosic source (e.g., agricultural residues,
hardwoods, or softwoods), the selected pretreatment (hydro-
thermal treatment, diluted acid treatment, alkali treatment), and
operational conditions (solid loading of lignocellulosic bio-
mass, temperature, time, percentage of catalyst) (Modenbach
and Nokes 2012; Ko et al. 2015; Dominguez et al. 2017).
Additionally, the concentration of hemicellulose-derived
sugars (xylose and xylooligosaccharides) can also vary de-
pending on raw material and pretreatment selected for the pro-
cessing of lignocellulosic biomass (Table 1). As seen in
Table 1, the increase of temperature (from 210 to 220 °C) in
steam explosion treatment increased the acetic acid concentra-
tion, furfural, and HMF in wheat straw hydrolysate (Alvira
et al. 2011). Moreover, the acid-diluted treatment yields a
higher concentration of hemicellulose-derived compounds as
monomers (xylose, furfural, HMF, or acetic acid) than
autohydrolysis treatment (using only water as reaction medi-
um), since part of hemicellulose-derived compounds is solubi-
lized as oligomers (xylooligosaccharides or acetyl groups) in
autohydrolysis treatments (Yáñez et al. 2009; Jesus et al.
2017). On the other hand, the total inhibitory load in hardwood
(e.g., eucalyptus) hydrolysates is superior to the inhibitory load
in hydrolysates from agricultural residues (corn cob and wheat
straw) (Costa et al. 2017). HMF concentration is higher than
furfural in softwood hydrolysates as hemicellulose is com-
posed mainly by hexoses (Table 1), while furfural is the pre-
dominant furan compound in hardwood and agricultural resi-
due hydrolysates (Westman et al. 2012; Dominguez et al.
2017). Phenolic compounds are generally present in hydroly-
sates at lower concentration (Table 1), and their inhibitory ef-
fect is more described for enzymes in cellulose conversion (Ko

et al. 2015). Under acid conditions, the formation of phenolic
compounds can differ, depending of lignocellulosic source and
treatment conditions (Ko et al. 2015). These compounds are
generally considered inhibitory for S. cerevisiae growth, affect-
ing its fermentative performance by increasing the fermenta-
tion lag phase and decreasing ethanol yield and productivity
(Guo and Olsson 2014; Larsson et al. 2000; Liu et al. 2004).
Furthermore, besides the presence of more than one inhibitory
compound in the hydrolysate, for an efficient conversion of
cellulose to glucose, higher fermentation temperatures are de-
sirable in order to facilitate simultaneous saccharification and
fermentation (SSF) processes, which can increase the yield of
lignocellulosic ethanol (Kelbert et al. 2016), representing an
additional stress factor. To partially overcome these physiolog-
ical hurdles, proper nutrient supplementation together with an
adequate yeast genetic background has shown to increase pro-
cess efficiency (Kelbert et al. 2015).

The adaptive response mechanism of yeast cells towards
the presence of a single inhibitor such as acetic acid (Dong
et al. 2017; Giannattasio et al. 2013; Guerreiro et al. 2016;
Lindberg et al. 2013; Mira et al. 2010), formic acid
(Henriques et al. 2017), furfural (Allen et al. 2010;
Gorsich et al. 2006), HMF (Ma and Liu 2010), and vanillin
(Nguyen et al. 2014a, b; Wang et al. 2016) has been exten-
sively described and studied. Nevertheless, yeast response
towards the synergistic effect of multiple inhibitors is gen-
erally less approached (Pereira et al. 2011a, 2014b).
Furthermore, aforementioned conditions required for
cost-efficient production of ethanol (high temperature and
xylose co-consumption) together with the presence of in-
hibitory compounds will further increase the negative ef-
fects on lignocellulosic fermentation performance.
Recently, the focus on more robust or tolerant yeast is
emerging as a desirable strategy for the fermentation of
lignocellulosic hydrolysates, with the previous phenotypic
selection of stress-tolerant strains being an essential step
(Jin et al. 2013; Wimalasena et al. 2014; Romaní et al.
2015). In this sense, this review aims to describe the neg-
ative effects caused by the presence of multiple
lignocellulose-derived inhibitors linked to required process
conditions (high temperature and xylose co-consumption),
as well as the mechanisms of yeast response and tolerance
towards the simultaneous presence of all these fermenta-
tion constrains (Fig. 1). Different from other reviews cov-
ering yeast lignocellulosic tolerance, this work will focus
on the overall effect caused by the mixture of the main
lignocellulose-derived inhibitors and not in the detached
individual effects. In addition, special attention is given
to the heterogeneous composition of different hydroly-
sates, which is considered of major importance to the yeast
tolerance response. Furthermore, rational metabolic engi-
neering strategies successfully applied to yeast under
industrial-like conditions are discussed.
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Inhibitory effects on yeast
during lignocellulosic fermentation

The overall metabolic and structural effects behind the nega-
tive effects of inhibitory compounds/process conditions on
yeast growth and fermentation are listed on Table 2 and are
further discussed below. Nevertheless, it should be taken into
consideration that the specific effects of some of these inhib-
itors remain unknown or not well understood.

Intracellular acidification and ATP depletion

The effects of weak acids, mainly of acetic acid, on
S. cerevisiae physiology and performance have been studied
and recently reviewed (Palma et al. 2018). In the acidic pH
conditions required for ethanol production from lignocellulos-
ic biomass, weak acids enter the yeast cell in their protonated
form (–COOH) and dissociate in the nearly pH-neutral cyto-
plasm, releasing hydrogen ions (H+) and leading to intracellu-
lar acidification (Ullah et al. 2012; Fig. 1 ). To maintain
intracellular pH homeostasis, this acidification is counteracted
by the activity of the H+-ATPase, which exports H+ at the
expense of ATP consumption (Fig. 1 ). Furthermore, the
anionic form of the acid is presumably exported by several
multidrug resistance (MDR) transporters also contributing to
ATP depletion in the yeast cell (Palma et al. 2018). In turn,
ATP depletion will further limit the activity of ATPases, caus-
ing the dissipation of the transmembrane electrochemical gra-
dient of protons, compromising secondary solute transport
systems and the maintenance of ion homeostasis in the yeast
cell (Serrano 1984). In addition, weak acids are also known to
inhibit glycolytic enzymes, preventing ATP regeneration
(Pampulha and Loureiro-Dias 1990) and leading to an energy
drain.

Reactive oxygen species accumulation/oxidative
stress

Weak acids are also known to cause oxidative stress, being the
accumulation of reactive oxygen species (ROS; Fig. 1 )
caused both by the increase of H+ in the cytosol and by the
decrease of the ROS scavenger reduced glutathione (GSH)
(Guo and Olsson 2014). The rate of ROS production is also
known to be significantly increased at high temperatures as a
consequence of heat stress (Morano et al. 2012). In yeast,
ROS are neutralized by non-enzymatic and enzymatic pro-
cesses, with these last requiring NADPH as a source of reduc-
tion equivalents (Herrero et al. 2008). To compensate NADPH
oxidation, yeast gradually increases the influx through pentose
phosphate and acetic acid pathways (Celton et al. 2012).
Thereby, an increase in acetic acid production is stimulated
at high temperatures, representing a synergistic effect that
leads to the decrease of growth and ethanol production rateT
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(Woo et al. 2014). In a similar manner, furan aldehydes such
as furfural and HMF also potentiate ROS generation by acting
as thiol-reactive electrophiles and depleting GSH levels (Allen
et al. 2010; Kim and Hahn 2013). Some phenolic compounds
have also been reported to cause oxidative stress (Nguyen
et al. 2014b); however, the mechanism behind their involve-
ment in ROS accumulation is not yet understood. ROS accu-
mulation in the yeast will ultimately result in damage at the
mitochondrial and vacuolar membranes, the nuclear chroma-
tin, and the actin cytoskeleton (Allen et al. 2010).

Redox imbalance

In the yeast cell, furans are converted into their corresponding
less toxic alcohols, through reactions mediated by NAD(P)H-
dependent oxidoreductases, which will ultimately lead to re-
dox imbalance (Ask et al. 2013; Fig. 1 ). This decrease/
drop in the reduction potential of the yeast intracellular com-
partment also contributes to oxidative stress, as NADPH is

required for the reduction of oxidized glutathione, thus also
decreasing GSH levels. The yeast S. cerevisiae also has the
capacity to detoxify phenolic compounds, converting them
into less toxic derivatives, either through a series of decarbox-
ylations and oxidations (Adeboye et al. 2015; Adeboye et al.
2017) or by NADPH-dependent reductions (Nguyen et al.
2014a; Wang et al. 2016), which may also contribute to a
redox imbalance depending on the prevalence of phenolic
compounds derived from the lignocellulose pretreatment.

Structural defects

In addition to these metabolic effects, the lignocellulose-
derived inhibitors also cause structural changes in the yeast
cell (Fig. 1 ), mainly in its cellular envelope. The presence
of these compounds is known to lead to the reduction of plas-
ma membrane stability and its selective permeability, by re-
ducing its ergosterol content (Godinho et al. 2018) or by
changing its protein-to-lipid ratio (Campos et al. 2009).

Fig. 1 Main mechanisms of the S. cerevisiae response towards the
presence of lignocellulose-derived inhibitors. Main negative stressor
effects are identified by numbered triangles: (1) intracellular
acidification, (2) ATP depletion, (3) ROS oxidative stress, (4) redox
imbalance, and (5) cell wall and plasma membrane perturbations.
Superscript numbered red circles nearby stressors indicate its main

negative effects. Superscript numbered green circles correspond to the
counteract effects on the corresponding main negative effect. Black
arrows represent transport of compounds and metabolic reactions; red
arrows indicate negative effects; full green arrows represent positive
activation/induction; dashed green arrows indicate counteract effects on
the correspondent main negative stressor effect
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Furthermore, the integrity and organization of the cell wall is
also compromised by these inhibitors; e.g., weak acids are
capable of increasing cell wall porosity and decreasing its
robustness (Simões et al. 2006). The decrease on the integrity
of the yeast cellular envelope significantly facilitates and
increases the entry of inhibitory compounds into the yeast
cell, synergistically contributing to their toxic effect. In fact,
Ding and collaborators (2011) have observed that the severe
effects of acetic acid on the yeast cell were potentiated by the
presence of phenol and furfural, due to the loss of membrane
integrity and metabolism inhibition. In fact, the synergistic
effect between weak acids, furans, and phenolic compounds
has been for long recognized as the main cause of the high
toxicity of lignocellulosic hydrolysates, as the cumulative ef-
fect of the inhibitors present in a hydrolysate is far beyond that
of the sum of their individual toxic effects (Ding et al. 2011;
Keating et al. 2006; Klinke et al. 2003; Palmqvist et al. 1999).

Effects of high temperature

High temperature is one of the conditions required for simul-
taneous saccharification and fermentation from lignocellulos-
ic biomass, and it can significantly affect yeast. Heat stress is
known to disturb protein stability, cell membrane, and cyto-
skeleton structures, which leads to protein dysfunction, meta-
bolic imbalances (Verghese et al. 2012), loss of metabolic
activity (Woo et al. 2014), and defects in transfer RNA
(tRNA) maturation by the accumulation of aberrant tRNA

processing intermediates upon shift of cells to high-
temperature conditions (Foretek et al. 2016). Heat shock re-
sponse is a fundamental cytoprotective pathway that enables
yeast to cope with high-temperature stress, by activation of
heat shock protein (HSP) synthesis (Verghese et al. 2012).

Contribution of modifications for xylose consumption
to the inhibitory effects

Xylose consumption, by expression of heterologous pathways,
on S. cerevisiae presents another hurdle on the production of
second-generation bioethanol, as it has been described to in-
crease yeast susceptibility to the inhibitory effects of the com-
pounds present in lignocellulosic hydrolysates (Bellissimi et al.
2009). In fact, the genetic modifications used for xylose con-
sumption can disturb the metabolic homeostasis of the yeast
cell, decreasing its tolerance. For instance, it is known that
expression of theP. stipitisXR/XDH pathway results in a redox
imbalance caused by the co-factor difference between XR and
XDH (while XR mainly uses NADPH, and XDH co-factor is
NAD+) (Zhang et al. 2012), which may interfere with the met-
abolic effects of the inhibitory compounds, in addition to the
undesirable accumulation of the by-product xylitol. Xylose up-
take is mediated by hexose transporters in yeast, which are
unspecific for pentose sugars (Subtil and Boles 2012). In low
concentrations, glucose improves xylose uptake by activating
these transporters; however, in higher concentrations, it out-
competes xylose, with high-glucose phosphorylation rates

Table 2 Main metabolic and
structural effects of the presence
of lignocellulose-derived
inhibitors in the yeast cell

Effects Stress (reference)

Metabolic

Redox imbalance Furans (Ask et al. 2013)

Phenolics (Adeboye et al. 2014, 2017; Nguyen et al. 2014a;
Wang et al. 2016)

ROS accumulation Furans (Kim and Hahn 2013)

Weak acids (Guo and Olsson 2014; Woo et al. 2014)

Phenolics (Nguyen et al. 2014b)

High temperature (Woo et al. 2014)

Intracellular acidification
(ATP depletion)

Weak acids (Ullah et al. 2012)

Inhibition of glycolytic
enzymes (ATP depletion)

Weak acids (Pampulha and Loureiro-Dias 1990; Pearce et al. 2001)

Sugar co-fermentation (Subtil and Boles 2012)

Structural

Membrane and cell wall integrity Weak acids (Godinho et al. 2018)

Phenolics (Campos et al. 2009)

High temperature (Verghese et al. 2012)

Organelle integrity Weak acids (Pereira et al. 2010a; Verghese et al. 2012)

Macromolecule production
and/or stability

Furans (Iwaki et al. 2013a)

Phenolics (Iwaki et al. 2013b)

High temperature (Foretek et al. 2016; Verghese et al. 2012)
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repressing sugar co-consumption (Lane et al. 2018). Hexose
and pentose catabolism converges at the level of phosphofruc-
tokinase, and glucose limits glycolytic enzyme activity at this
level (Subtil and Boles 2012). Also, after glucose depletion in a
medium containing glucose and xylose (which occurs in ligno-
cellulosic fermentations), cell growth and xylose consumption
rate decrease sharply to values even lower than those in media
containing xylose as the sole carbon source, and cells cease to
respond to residual xylose, entering a new lag phase, named
post-glucose effect lag phase (Wei et al. 2018). Intracellular
xylose can, in fact, trigger a signal similar to carbon limitation
in yeast cells actively metabolizing xylose, which causes low
assimilation rates (Osiro et al. 2018). Xylose metabolism can
also lead to downregulation of genes encoding gluconeogenic
enzymes (Salusjärvi et al. 2006) and cause upregulation of
genes involved in response to stress, starvation, DNA damage,
and lipid metabolism by being forced to metabolize unconven-
tional substrates (Gopinarayanan and Nair 2018).

End-product inhibition

On top of these stress factors inherent to efficient processing
of lignocellulosic materials, the target product itself will, in
most of the cases, affect negatively yeast cell metabolism. The
most well-described end-product inhibition is ethanol, having
pleiotropic effects on yeast cell (Deparis et al. 2017) affecting
cell growth and viability (Pereira et al. 2011b) mainly by
distressing cell wall and membrane integrity. An adequate
medium supplementation partly counteracts the ethanol nega-
tive effects (Pereira et al. 2010b).

Mechanisms of yeast response
to the presence of multiple
inhibitors/hydrolysates

S. cerevisiae has developed several mechanisms to cope with
the presence of lignocellulose-derived inhibitors and their ef-
fects (Fig. 1). Additionally, the yeast also exhibits responses
towards the hurdles typical of lignocellulosic processes, such
as high temperatures and xylose co-consumption (Fig. 1). As
lignocellulosic materials are a platform to obtain several dif-
ferent compounds, the end-product inhibition response will
not be addressed in here.

Oxidative stress response

One of the most toxic effects of the presence of lignocellulose-
derived inhibitors on the yeast cell is oxidative stress, an im-
balance between ROS generation and antioxidant response.
The YAP1 gene encodes a transcription factor, activated by
the presence of both furans (Kim and Hahn 2013) and some
phenolic compounds (Nguyen et al. 2014b), and is the major

regulon in oxidative stress response (Herrero et al. 2008). It
induces expression of genes involved in the detoxification of
superoxide anions (SOD1), reduction of hydrogen peroxide
(GPX2, CTT1, TSA1), and thiol reduction (TRX2, TRR1), as
well as expression of genes involved in the glutathione system
(GSH1, GSH2, GLR1, GRX1, YCF1) (Hélène et al. 2000).
YAP1 also regulates the expression of other genes involved
in response to several stressful conditions, such as MDR pro-
teins (FLR1, ATR1) (Sundström et al. 2010) and HSPs (SSA1)
(Maeta et al. 2004).

Furthermore, YAP1 is known to induce STB5 (Ouyang et al.
2011), a transcription factor that regulates most genes of the
PPP, being a key player for NADPH regeneration required for
oxidative stress response (Larochelle et al. 2006), but also for
the detoxification of inhibitory compounds (Gorsich et al.
2006; Nguyen et al. 2014b). As already mentioned, in the
presence of furfural and HMF, the yeast cell responds with
the activity of NAD(P)H-dependent oxidoreductases to con-
vert them into the less toxic furfuryl alcohol and furan
dimethanol, respectively (Heer et al. 2009; Liu et al. 2008;
Xianxian et al. 2015). In addition, being PPP the primary path-
way for xylose metabolism, STB5 regulation is important not
only for tolerance towards inhibitory compounds but also for
the consumption of alternative carbon sources present in lig-
nocellulosic biomass (Kim et al. 2015). The detoxification of
some phenolic compounds, involving genes such as ALD5,
PAD1, ATF1, and ATF2 (Adeboye et al. 2017), and several
decarboxylation and oxidation reactions (Adeboye et al.
2015) could hypothetically counteract the redox imbalance
created by the reduction of furan compounds. Nevertheless,
the detoxification of other phenolic compounds, such as van-
illin, involves NADPH-dependent reductases, and in this
sense, the effects of the phenolic compounds in the redox ho-
meostasis of the yeast will strongly depend on their chemical
nature (Adeboye et al. 2014). Additionally, S. cerevisiae in-
duces the synthesis of diverse molecules with antioxidant ac-
tivity against heat-induced oxidative stress (Morano et al.
2012), with several molecules being identified as important
for yeast response to heat stress, such as HSPs, H+-ATPases,
ubiquitin, and antioxidant enzymes (Gao et al. 2016).

Structural response: cell membrane

Accumulation of trehalose is another defense mechanism acti-
vated by oxidative stress, where it plays an important protective
role in the maintenance of the integrity of the cell membrane
(Alvarez-Peral et al. 2002), probably by stabilization of mem-
brane proteins (Jain and Roy 2009). In this sense, trehalose
accumulation has been described to be activated in response
to membrane-disrupting stresses, such as high temperatures
(Mensonides et al. 2014) and exposure to weak acids (Guo
and Olsson 2014). Accordingly, the genes involved in trehalose
synthesis have been found to be regulated by the MSN2/4
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transcription factors, which are activated upon oxidative stress
(Gasch et al. 2000; Hasan et al. 2002), but also by stressors such
as high temperature and low pH (Causton et al. 2001).

Another factor that has been identified as a determinant for
yeast tolerance is its capacity to largely rearrange the lipid
composition of the plasma membrane (e.g., sphingolipids
and sterols) (Lindberg et al. 2013). Sphingolipid content was
found to be increased in response to acetic acid stress
(Lindberg et al. 2013), and the upregulation of sphingolipid
biosynthesis was described to be mediated by the TORC2-
Ypk1 signaling complex (Roelants et al. 2011), which is acti-
vated not only by acetic acid (Guerreiro et al. 2016) but also
by heat stress (Sun et al. 2012). Ergosterol, a major constituent
of the yeast plasmamembrane, is another molecule required to
maintain membrane integrity. In fact, a possible interaction
has been suggested between ergosterol biosynthesis and the
oxidative stress response (Higgins et al. 2003). Furthermore,
several genes from the ergosterol biosynthetic pathway were
upregulated in response to acetic acid stress, as well as
PDR18, which was found to have a physiological role in er-
gosterol transport and proper incorporation into the plasma
membrane, increasing its lipid order and decreasing the non-
specific membrane permeability (Godinho et al. 2018).
PDR16 (positively regulated by YAP1) and PDR17 have also
been described to be important for lipid biosynthesis (ergos-
terol and phospholipids, respectively), not only playing an
important role on plasma membrane integrity but also control-
ling lipid content in various compartments of the cell, provid-
ing mechanisms for multidrug resistance (van den Hazel et al.
1999). In fact, the expression of genes of the pleiotropic drug
resistance (PDR) family was found to be enhanced in response
to the presence of furfural and HMF (Liu et al. 2008; Ma and
Liu 2010). The PDR family mainly consists of membrane-
and transport-related proteins, such as the ATP-binding cas-
sette (ABC) transporters, including the weak acid–inducible
PDR12 which contributes for the efflux of anions (Ullah et al.
2012). In fact, PDR12 is regulated by WAR1, a transcription
factor that is activated by phosphorylation in the presence of
weak acids (Frohner et al. 2010; Gregori et al. 2008; Kren
et al. 2003). Nevertheless, Pdr12 role in response to weak acid
stress is not common to weak acids in general, as its absence
leads to high susceptibility to the more lipophilic weak acids
but seems to be advantageous for tolerance to shorter acids,
such as acetic and formic (Nygård et al. 2014). In fact, TPO2
and TPO3, encodingMDR transporters of the major facilitator
superfamily, have been found to confer resistance to acetic,
propionic, benzoic, and octanoic acids (with a slightly more
evident effect for the more hydrophilic acids), presumably
through the active export of the counter ions (Fernandes
et al. 2005). More recently, TRK1, encoding for a high-
affinity potassium transporter, has been found to have a detri-
mental effect in the yeast response to formic acid, presumably
by contributing to the influx of this acid into the cell

(Henriques et al. 2017). The fact that TRK1 is a determinant
of yeast tolerance towards acetic acid is another example of
how diverse weak acids may activate different responsemech-
anisms. Accordingly, it has been proposed that dissimilar
weak acids may activate unique tolerance mechanisms: while
less lipophilic acids (acetate and propionate) were found to
mainly regulate membrane-associated transport processes,
the transcriptional response to more strongly lipophilic acids
(benzoate and sorbate) mainly regulates genes related to the
cell wall (Abbott et al. 2007).

Structural response: cell wall

The cell wall integrity (CWI) signaling pathway in S. cerevisiae
is activated in response to several forms of cell wall stress and
acts on cell wall remodeling (through control of wall biosyn-
thetic enzymes), transcriptional regulation of cell wall–related
genes, and organization of actin cytoskeleton (Levin 2005,
2011). CWI pathway has been found to play an important role
in yeast tolerance towards major components of lignocellulosic
hydrolysates, such as acetic acid (Nishida et al. 2014), furfural
(Liu et al. 2018), and HMF (Liu et al. 2018; Zhou et al. 2014).
Weak acid stress is also known to cause the activation of
HAA1, a transcription factor responsible for yeast adaptation
and tolerance to short-chain weak acids, such as acetic and
formic acids (Fernandes et al. 2005; Henriques et al. 2017).
HAA1 has been found to transcriptionally regulate cell wall
proteins, such as SPI1 and YGP1; proteins from the plasma
membrane, such as the MDR transporters TPO2 and TPO3;
and proteins involved in the biosynthesis of lipids (contributing
to the integrity of the plasmamembrane) (Fernandes et al. 2005;
Mira et al. 2010; Simões et al. 2006). More recently, HAA1 has
been hypothesized to play a role in acetic acid tolerance through
the activation of the CWI pathway (Cunha et al. 2018).

ATP and NADH regeneration

Another inhibitory effect occurring during lignocellulosic eth-
anol fermentation is ATP depletion, mainly caused by the
activity of ATP-dependent pumps required to cope with the
intracellular acidification caused by weak acids, in particular
the plasma and vacuolar H+-ATPases and multidrug efflux
pumps. In this situation, the yeast cell adjusts its carbon flux
distribution between respiratory and fermentative growth to
achieve energy homeostasis through optimal ATP regenera-
tion (Guo and Olsson 2014). Furthermore, the trehalose syn-
thase (TPS1) has been found to be essential to maintain ATP
levels during heat shock (Petitjean et al. 2015). MSN2/4 tran-
scription factors, known to regulate trehalose biosynthesis
genes, were also reported to induce glycolysis, increasing
the levels of acetyl-CoA, an essential metabolite to generate
ATP in the tricarboxylic acid (TCA) cycle and to promote
yeast cell growth and proliferation (Kuang et al. 2017).
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Additionally, the presence of furan compounds was found to
result in the activation of glycolysis and TCA cycle, contrib-
uting to both ATP and NADH regenerations (Lin et al. 2009).

Successful cases of yeast robustness
improvement for industrial-like conditions

Industrial-derived tolerant strains

The use of S. cerevisiae strains isolated from industrial harsh
conditions (such as high sugar and ethanol concentrations, el-
evated temperatures, pH variations, and presence of toxic com-
pounds) for the production of second-generation bioethanol
has been receiving increased attention in the last years
(Della-Bianca and Gombert 2013). These isolated strains have
shown superior abilities than laboratory strains, with the differ-
ences in fermentation performance being related to metabolic
activity, not only with sugar consumption and ethanol produc-
tion (Pereira et al. 2010c) but also with furan conversion
(Brandberg et al. 2004; Pereira et al. 2014a). Interestingly,
the better fermentation performance of industrial isolates com-
pared to laboratory strains in very high-gravity conditions was
related with an increased accumulated content of sterols, gly-
cogen, and trehalose in the industrial isolates (Pereira et al.
2011b). On the other hand, under second-generation inhibitory
conditions, the S. cerevisiae ATCC96581 strain (isolated from
spent sulfite liquor at Swedish pulp plant) converted almost
completely the furfural of spruce hydrolysate, whereas the lab-
oratory strain CBS 8066 only detoxified 25% (Brandberg et al.
2004). This fact could be explained by a higher activity of
alcohol dehydrogenase responsible for the conversion of fur-
fural into less toxic alcohols. Pereira and co-workers (2014a)
also reported a faster bioconversion/detoxification of furfural
and HMF in eucalyptus hydrolysate by two industrial strains,
PE-2 and flocculating CCUG53310 isolated from first- and
second-generation bioethanol industries, respectively. The au-
thors concluded that the ability for detoxification of furan com-
pounds is dependent on strain background, which is determi-
nant for an efficient ethanol production (Pereira et al. 2014a).
Moreover, the flocculant character of strains, which has well-
known process–related advantages (Gomes et al. 2012), has
been also related to inhibitor tolerance (Purwadi et al. 2007;
Westman et al. 2014). The mechanism and robustness of the
flocculating CCUG53310 strain have been investigated and
compared with the laboratorial S. cerevisiae CBS 8066
(Westman et al. 2012). The flocculant strain showed higher
tolerance to the inhibitors present in a spruce hydrolysate, even
though it presented lower expression levels of YAP1, ATR1,
and FLR1 genes (known to confer resistance to lignocellulose-
derived inhibitors) than the laboratorial strain, highlighting
flocculation as a physiological trait determinant of yeast toler-
ance. The authors also hypothesized that the lower expression

of YAP1 (normally activated in response to oxidative stress) in
the CCUG53310 strain indicated that flocculation may prevent
ROS accumulation, through mechanisms that are still not elu-
cidated but are likely related with a reduction of toxic concen-
trations around the cell and in the cell interior.

Therefore, the selection of robust yeast chassis for meta-
bolic engineering purposes (such as xylose consumption)
shows a further edge for the lignocellulose-to-ethanol fermen-
tations (Costa et al. 2017). In fact, Romaní et al. (2015)
expressed a xylose consumption pathway in three different
S. cerevisiae strains: the laboratorial CEN.PK113-5D and
two industrial isolates from first-generation bioethanol plants
(PE-2 and CAT-1), and observed that the two industrial strains
presented higher xylose consumption and ethanol production
than the strain with laboratorial background, both in synthetic
media and in a corn cob hydrolysate. Kim et al. (2017b) also
evaluated the host strain background of a haploid derivative of
the industrial strain S. cerevisiae ATCC 4124 and of the lab-
oratory D452-2 strain by genetically engineering them for
xylose consumption. They observed that the industrial-
derived strain had a superior fermentative performance in a
Miscanthus hydrolysate (superior efficiency of xylose fermen-
tation and ethanol production) than the laboratorial strain con-
taining the same genetic modification, highlighting the impor-
tance of selecting a naturally robust host strain. In addition,
Costa et al. (2017) showed differences among metabolically
engineered industrial strains for xylose consumption depend-
ing of the hemicellulosic hydrolysate used.

Moreover, these desirable traits for inhibitor tolerance of
the industrial isolates can still be improved through metabolic
engineering, mutagenesis, genome shuffling, or evolutionary
engineering. The work developed by Liu et al. (2005, 2008,
2018) and Liu and Moon (2009) is a clear example of the
development of new improved strains. The industrial
S. cerevisiae NRRL Y-12632, isolated from the brewer’s top
yeast in Netherlands in 1925, was subjected to evolutionary
engineering in HMF- and furfural-containing media, resulting
in the reduction of lag phase, improvement of glucose con-
sumption, and ethanol production in media containing these
inhibitors. It was further described that these improved traits
resulted from determinant yeast response mechanisms, such
as enhanced expression of PDR gene family, increased
NAD(P)H-dependent aldehyde reduction activities, increased
expression of genes from glycolysis, and PPP for NAD(P)H
regeneration and robust cell wall integrity pathway.

Rational metabolic engineering strategies to improve
tolerance to lignocellulosic hydrolysates

The use of industrial strains as hosts for metabolic engineering
is a promising approach for the feasibility of second-generation
bioethanol industry. An extensive knowledge of the mecha-
nisms required for the yeast response towards lignocellulose-
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derived inhibitors has been guiding the use of several strategies
to develop S. cerevisiae strains capable of withstanding acute
stresses with improved growth/fermentative performances
(Table 3).

Several of these strategies have focused on the detoxifica-
tion of inhibitory compounds. Jayakody and collaborators
(2018) improved the fermentation of aMiscanthus hydrolysate
by overexpressing of GRE2 (encoding a NADPH-dependent
aldehyde reductase), increasing the yeast capacity to detoxify
aldehyde inhibitors, such as vanillin and glycolaldehyde. The
overexpression of PRS3, responsible for the synthesis of PRPP
(a precursor of nucleotide and histidine biosynthesis), was
found to improve yeast fermentation rates and productivities
in different lignocellulosic hydrolysates, through a hypothe-
sized increase in NADH regeneration which facilitates detox-
ification furans (Cunha et al. 2015). Nevertheless, it should be
noted that this positive effect was dependent of the strain back-
ground and composition of the fermentation media, highlight-
ing the importance of the selection of yeast chassis and fermen-
tation conditions for effective metabolic engineering (Cunha
et al. 2015). Detoxification of phenolic compounds has also
been addressed to improve yeast tolerance: the expression of a
laccase from the white rot fungus Trametes versicolor in a
laboratorial S. cerevisiae strain has increased the yeast ability
to convert coniferyl aldehyde into less toxic compounds, in-
creasing yeast growth and ethanol production in a dilute acid
spruce hydrolysate (Larsson et al. 2001). Wallace-Salinas and
collaborators (2014) decreased the lag phase and improved the
growth rate of an Ethanol Red strain (previously modified for
xylose consumption) (Demeke et al. 2013a, b), in a spruce
hydrolysate, by overexpressing YAP1, a transcription factor
involved in oxidative stress response and tolerance.
Furthermore, these authors also overexpressed MCR1, coding
for the mitochondrial NADH-cytochrome b5 reductase,
resulting in a faster furaldehyde reduction capacity with posi-
tive effects on yeast growth (similar to the ones resultant from
YAP1 overexpression). Nevertheless, no cumulative effect of
the simultaneous overexpression of these two genes on yeast
tolerance was observed (Wallace-Salinas et al. 2014).

Other studies have also attempted to improve yeast toler-
ance together with xylose consumption capacity. In fact, a
haploid derivative of an industrial strain, isolated from a mo-
lasses distillery, was modified for xylose consumption with the
XR/XDH pathway and for acetate consumption by expression
of a NADH-dependent acetate reduction pathway (adhE gene
from Escherichia coli coding for an acetylating acetaldehyde
dehydrogenase) (Kim et al. 2017b). This later modification not
only allowed the in situ detoxification of acetic acid but also
increased intracellular NAD+ levels, potentiating XDH activity
and reducing xylitol accumulation, leading to a higher ethanol
yield. Hasunuma et al. (2014) also improved ethanol produc-
tion from wheat straw–derived xylose (in an industrial strain
also expressing hemicellulolytic enzymes) through the

overexpression of TAL1 and FDH1 and expression of a mutant
NADH–dependent ADH1, which resulted in formate detoxifi-
cation and faster detoxification of furfural, leading to a higher
regeneration of NAD+ co-factor, improving the XR/XDH con-
sumption pathway. More recently, HAA1 (encoding a tran-
scription factor involved in adaptation and tolerance to weak
acid stress) and PRS3 (encoding a 5-phospho-ribosyl-1(alpha)-
pyrophosphate synthetase that synthesizes PRPP, which is re-
quired for nucleotide, histidine, and tryptophan biosynthesis)
have been expressed in a first-generation bioethanol strain (PE-
2), previously modified for xylose consumption, improving its
adaptation to a non-detoxified Paulownia hydrolysate (Cunha
et al. 2018). Furthermore, the simultaneous overexpression of
both genes had a cumulative positive effect on yeast growth,
and expression of both HAA1 and PRS3 was found to play a
role in yeast cell wall integrity.

These successful strategies show that a thorough knowl-
edge of the mechanisms involved in yeast response towards
the presence of inhibitory compounds is a determinant for the
development of tolerant strains to attain an efficient and eco-
nomical production of lignocellulosic bioethanol.

Final remarks and future perspectives

The lignocellulosic process–derived stress factors lead to nega-
tive effects in the yeast cell at molecular, metabolic, and struc-
tural levels, being the most noteworthy, intracellular acidifica-
tion, ATP depletion, ROS-induced oxidative stress, redox im-
balance, and cell wall and plasma membrane perturbations. In
order to cope with these conditions, the cell falls back on several
global mechanisms that counteract their synergistic negative
effects. In spite of their complexity, some of these mechanisms
are nowadays relatively well described and linked with success-
ful cases of yeast engineering. Nonetheless, the majority of
studies regarding this subject use laboratorial yeast strains and
focus on the effect and response to a single inhibitor. As
depicted in this review, in process-like conditions, the synergetic
effect of the presence of several inhibitors is of major influence
in the process and should always be considered and evaluated in
order to efficiently develop lignocellulosic hydrolysate-tolerant
strains. Furthermore, the selection of chassis’ strains for meta-
bolic engineering strategies should be regarded as a crucial step
to attain more robust and efficient strains. In fact, industrial
isolates has been receiving growing attention in this field, as
they naturally present advantageous traits (such as higher capac-
ity for inhibitor tolerance/detoxification, thermotolerance, faster
sugar consumption) that could represent a leverage for the at-
tainment of efficient second-generation bioethanol processes.
However, metabolic engineering of these industrial strains still
poses some constrains that are being overcome by the presently
available molecular toolbox for S. cerevisiae (in constant evo-
lution), which facilitates the development of highly engineered
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yeast strains. Accordingly, more recent studies have been using
industrial yeast and lignocellulosic hydrolysates to develop
more tolerant strains. Nevertheless, there is a lack of fundamen-
tal understanding regarding the response mechanisms that con-
fer higher tolerance and robustness to these industrial isolates,
being a subject requiring further investigation. As the complex-
ity of yeast cell response is unraveled, an increasing number of
metabolic engineering strategies will become successful, feed-
ing back the accumulated knowledge. Nowadays, works to im-
prove yeast tolerance still mainly focus on only one part of the
inhibitory effects (such as oxidative stress or specific inhibitor
detoxification). Due to the complexity of themultifactorial yeast
tolerance to stress and in order to be effective, metabolic engi-
neering strategies should be rationally designed to simulta-
neously overcome all the stresses imposed by the lignocellulos-
ic hydrolysates. Additionally, the heterogeneity of lignocellulos-
ic hydrolysates (dependent on the raw material and pretreat-
ments used) should also be taken into consideration, as possible
synergetic and antagonistic effects may arise from different in-
hibitory compositions and trigger different yeast responses.
Taken together, this knowledge can unlock a wide range of
strategies to develop tailor-made S. cerevisiae strains through
rational metabolic engineering approaches for industrial pro-
cesses, ultimately resulting in improved robustness when chal-
lenged in lignocellulosic hydrolysates, greatly contributing to
the development of sustainable growth based on a bioeconomy.
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