459 research outputs found

    Parent and child mental health during COVID-19 in Australia: The role of pet attachment

    Get PDF
    Restrictions, social isolation, and uncertainty related to the global COVID-19 pandemic have disrupted the ways that parents and children maintain family routines, health, and wellbeing. Companion animals (pets) can be a critical source of comfort during traumatic experiences, although changes to family routines, such as those caused by COVID-19, can also bring about challenges like managing undesirable pet behaviours or pet-human interactions. We aimed to examine the relationship between pet attachment and mental health for both parents and their children during the COVID-19 pandemic in Australia. A total of 1,034 parents living with a child under 18 years and a cat or dog completed an online cross-sectional survey between July and October 2020. Path analysis using multivariate linear regression was conducted to examine associations between objective COVID-19 impacts, subjective worry about COVID-19, human-pet attachment, and mental health. After adjusting for core demographic factors, stronger pet-child attachment was associated with greater child anxiety (parent-reported, p < .001). Parent-pet attachment was not associated with self-reported psychological distress (p = .42), however, parents who reported a strong emotional closeness with their pet reported greater psychological distress (p = .002). Findings highlight the role of pets during times of change and uncertainty. It is possible that families are turning to animals as a source of comfort, during a time when traditional social supports are less accessible. Alternatively, strong pet attachment is likely to reflect high levels of empathy, which might increase vulnerability to psychological distress. Longitudinal evidence is required to delineate the mechanisms underpinning pet attachment and mental health

    Ab initio calculation of the neutron-proton mass difference

    Get PDF
    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14\% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300300 kilo-electron volts, which is greater than 00 by 55 standard deviations. We also determine the splittings in the Σ\Sigma, Ξ\Xi, DD and Ξcc\Xi_{cc} isospin multiplets, exceeding in some cases the precision of experimental measurements.Comment: 57 pages, 15 figures, 6 tables, revised versio

    A photometric and spectroscopic study of the cataclysmic variable SX Leonis Minoris in quiescence and superoutburst

    Get PDF
    We present CCD imaging, CCD photometry on long and short timescales, and time-resolved spectroscopy of SX LMi, a new SU Ursae Majoris type dwarf nova. The quiescent optical spectrum shows broad double-peaked Balmer, He I, and He II emission lines, similar to other quiescent dwarf novae. Absorption lines from a late-type secondary are not detected. Time-resolved spectra obtained in quiescence reveal radial velocity variations of the Balmer emission lines on a period of 0.06717 +/- 0.00011 days, or 96.72 +/- 0.16 minutes, with only a slight possibility of a daily cycle-count error. Optical photometry obtained between 1987 and 1991 shows flickering with a peak-to-peak amplitude of 0.18 mag. The binary orbital period can sometimes be seen in the photometric record. Long-term photometric monitoring for a three-year period between 1992 October and 1995 June shows seven well-defined outbursts and marginally detects a few others. The outburst interval varies between 34 and 64 days. During the 1994 December outburst, optical photometric observations show that SX LMi exhibited superhumps with a period of 0.06893 +/- 0.00012 days, which is 2.6 percent +/- 0.2 percent longer than the orbital period, as expected for a normal SU UMa star at this period. Spectra obtained during superoutburst show dramatic variations in the emission-line profiles on timescales of 10 minutes. Profile fits indicate that underlying absorption contributes to the shape of the Balmer emission-line profiles during superoutburst as in other dwarf novae in outburst or superoutburst. Direct images in good seeing show a ~D19 mag companion star from SX LMi

    Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage

    Get PDF
    This paper proposes the use of doubly-symmetric, eight-shaped orbits in the circular restricted three-body problem for continuous coverage of the high-latitude regions of the Earth. These orbits, for a range of amplitudes, spend a large fraction of their period above either pole of the Earth. It is shown that they complement Sun-synchronous polar and highly eccentric Molniya orbits, and present a possible alternative to low thrust pole-sitter orbits. Both natural and solar-sail displaced orbits are considered. Continuation methods are described and used to generate families of these orbits. Starting from ballistic orbits, other families are created either by increasing the sail lightness number, varying the period or changing the sail attitude. Some representative orbits are then chosen to demonstrate the visibility of high-latitude regions throughout the year. A stability analysis is also performed, revealing that the orbits are unstable: it is found that for particular orbits, a solar sail can reduce their instability. A preliminary design of a linear quadratic regulator is presented as a solution to stabilize the system by using the solar sail only. Finally, invariant manifolds are exploited to identify orbits that present the opportunity of a ballistic transfer directly from low Earth orbit

    Extension of Earth-Moon libration point orbits with solar sail propulsion

    Get PDF
    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun’s motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits

    Models of peer support to remediate post-intensive care syndrome: A report developed by the SCCM Thrive International Peer Support Collaborative

    Get PDF
    Objective: Patients and caregivers can experience a range of physical, psychological, and cognitive problems following critical care discharge. The use of peer support has been proposed as an innovative support mechanism. Design: We sought to identify technical, safety and procedural aspects of existing operational models of peer support, among the Society of Critical Care Medicine Thrive Peer Support Collaborative. We also sought to categorize key distinctions between these models and elucidate barriers and facilitators to implementation. Subjects: 17 Thrive sites from the USA, UK, and Australia were represented by a range of healthcare professionals. Interventions: Via an iterative process of in-person and email/conference calls, members of the Collaborative, defined the key areas on which peer support models could be defined and compared; collected detailed self-reports from all sites; reviewed the information and identified clusters of models. Barriers and challenges to implementation of peer support models were also documented. Results: Within the Thrive Collaborative, six general models of peer support were identified: Community based, Psychologist-led outpatient, Models based within ICU follow-up clinics, Online, Groups based within ICU and Peer mentor models. The most common barriers to implementation were: recruitment to groups, personnel input and training: sustainability and funding, risk management and measuring success. Conclusion: A number of different models of peer support are currently being developed to help patients and families recover and grow in the post-critical care setting

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    corecore