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Abstract 

This paper proposes the use of doubly-symmetric, eight-shaped orbits in the circular restricted 

three-body problem for continuous coverage of the high-latitude regions of the Earth. These orbits, 

for a range of amplitudes, spend a large fraction of their period above either pole of the Earth. It is 

shown that they complement Sun-synchronous polar and highly eccentric Molniya orbits, and 

present a possible alternative to low thrust pole-sitter orbits. Both natural and solar-sail displaced 

orbits are considered. Continuation methods are described and used to generate families of these 

orbits. Starting from ballistic orbits, other families are created either by increasing the sail 

lightness number, varying the period or changing the sail attitude. Some representative orbits are 

then chosen to demonstrate the visibility of high-latitude regions throughout the year. A stability 

analysis is also performed, revealing that the orbits are unstable: it is found that for particular 

orbits, a solar sail can reduce their instability. A preliminary design of a linear quadratic regulator 

is presented as a solution to stabilize the system by using the solar sail only. Finally, invariant 

manifolds are exploited to identify orbits that present the opportunity of a ballistic transfer directly 

from low Earth orbit. 
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Introduction 

Continuous polar coverage of the Earth’s high-latitude regions could enable a 

range of applications that at the moment are only partially available: these include 

polar weather prediction, hurricane monitoring, and continuous 

telecommunication links with stations in the Antarctica (Lazzara et al. 2011). 

Currently, coverage of high-latitude regions of the Earth from space is performed 

by mainly two types of platforms. One consists of a spacecraft or a constellation 

in highly-inclined or polar, low or medium orbits. These orbits, such as Sun-

synchronous orbits, allow the spacecraft to image only a narrow swath at each 

polar pass, relying on multiple passes for full coverage, therefore offering 

relatively low temporal resolution. The other option is to use highly elliptical 

orbits (HEOs). A particular type of HEO is the well-known Molniya orbit, whose 

period is typically one half of a sidereal day, and its inclination is 63.4° or 116.6°. 

At either of these critical inclinations the argument of perigee no longer rotates 

due to Earth’s oblateness, and the position of apogee remains unchanged 

(Wertz,Larson 1999). Although the apocentre is far enough to offer a hemispheric 

view of the Earth, the inclination is quite low for providing high-latitude 

continuous coverage. 

Recent research (Anderson,Macdonald 2010) considered changing the critical 

inclination of the Molniya orbit to 90°, using a continuous solar electric 

propulsion (SEP) system for maintaining the orbit. However, the propellant mass 

fraction limits the mission duration and furthermore the spacecraft can only spend 

at most a few hours at the apocentre, at each passage. 

The ideal point of view for viewing Earth’s poles would be a stationary spacecraft 

above the pole itself. In this position, the footprint of the spacecraft will be 

constantly at the pole, in the same way as the footprint of a geostationary (GEO) 

spacecraft is constantly at some longitude on the equator. 

This concept was originally proposed by Driver (1980), and named pole-sitter. 

However, while for GEO platforms the attraction of the Earth is balanced through 

the spacecraft’s free-fall orbital motion, in a pole-sitter a relatively high, 

continuous acceleration must be provided to counterbalance Earth and solar 
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gravitational attraction and maintain the spacecraft in such a location. This 

requires a low-thrust propulsion system continuously thrusting and it limits 

considerably the lifetime of the spacecraft. 

Mainly to address these issues, different concepts have been proposed in the 

literature (Ceriotti et al. 2011). Some researchers proposed to use a solar sail to 

place a spacecraft (named Statite by Forward, 1991) on an artificial equilibrium 

point in the Sun-Earth system above L1, however the vertical displacement that 

can be achieved is relatively modest for realistic area-to-mass ratios (McInnes et 

al. 1994), and the coverage of the poles is not possible in certain seasons of the 

year. In order to maintain the latitude of the spacecraft as quasi-constant, a one-

year-periodic halo-type orbit around a displaced equilibrium point was designed 

by Waters,McInnes (2007). Other researchers instead investigate the use of hybrid 

solar sail propulsion and SEP to reduce the amount of propellant that is needed by 

a Statite (Baig,McInnes 2008) or an SEP pole-sitter (Ceriotti,McInnes 2011). 

In this paper, instead, we investigated a novel, alternative concept for high-

latitude Earth coverage, which complements both the existing studies on pole-

sitters and other stationary platforms in the Sun-Earth system, and existing Earth-

centered missions on HEOs and polar orbits. The concept makes use of solar-sail-

displaced doubly-symmetric orbits in the Sun-Earth system. Doubly-symmetric 

orbits (also called “type C” by Goudas, 1963) are periodic orbits that exist in the 

circular restricted three-body problem (CR3BP), and are symmetric with respect 

to two orthogonal planes. A particular kind of these orbits are eight-shaped (or 

figure-of-eight) orbits, which at small amplitudes appear in the vicinity of the 

collinear Lagrange points. Their name comes from their shape, which resembles a 

figure-eight when viewed in the y-z plane, at least for a certain range of 

amplitudes. The orbits were first discovered and sketched by Moulton (1920), 

however the computational capabilities at that time were not enough for a 

complete numerical integration. It was only more recently that, in a numerical 

survey of periodic orbits in the CR3BP, families of these orbits were precisely 

computed (Kazantzis 1979b, 1980). 

It was firstly proposed to use these orbits for high-latitude observation for the first 

time by Folta et al. (2001). Recently, Archambeau et al. (2011) published a study 

on the same orbits in the Earth-moon system; in the same work, a detailed study 

of the manifolds of these orbits towards the moon was provided, with the idea of 
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identifying possible trajectories that can be used for lunar observation. It is also 

found that manifolds of these orbits preserve their shape for a longer time than 

those of classic halo orbits. 

On an eight-shaped orbit, a spacecraft would oscillate above and below the 

ecliptic plane, spending a long fraction of the orbit period above either pole, as 

will be shown. Therefore, for an interval of time, the spacecraft can offer similar 

services to those of a pole-sitter. In this paper, we will present the design of 

different families of natural and sail-displaced eight-shaped orbits, and will 

investigate the visibility conditions that they offer for a potential future platform 

for continuous polar coverage, constituted by one or a formation of spacecraft. We 

will also assess their natural instability, and show that the sail can contribute 

positively to mitigate it, for certain families of orbits and choice of lightness 

numbers. 

Sail-displaced eight-shaped orbits were also studied by Farrés,Jorba (2010): in 

that paper the authors fixed the sail lightness number at 0.051689 (the one used 

for the Geostorm mission), a reasonable value for a near-term application, and 

families of orbits at L1 were designed by varying the out-of-plane angle of the 

solar sail with respect to the ecliptic plane. 

In this paper, we consider the L2 case, because the sail displacement that is 

generated is towards the Earth, and therefore beneficial for Earth observation, as it 

will be explained. Furthermore, we additionally consider families of orbits with 

different lightness numbers, ranging from 0 (which represents the ballistic case) to 

0.05, and we will show that orbits interesting for polar observation can be found 

inside this range. 

The present paper is organized as follows. Section 1 presents the methodologies to 

design families of natural and sail-displaced eight-shaped orbits; Section 2 studies 

the visibility conditions that some selected orbits offer; Section 3 describes the 

stability analysis of the orbit families, and a preliminary control method, based on 

a linear quadratic regulator (LQR) is presented; finally, Section 3.1 studies the 

invariant manifolds of the orbits, to investigate the possibility of ballistic transfers 

from the Earth. 



1 Eight-shaped orbit design 

We consider the CR3BP that describes the motion of a negligible mass (the 

spacecraft) under the gravitational attraction of two masses (the primaries, Sun 

and Earth in this case), with circular motion around their common centre-of-mass. 

We use a synodic reference frame centered at the center-of-mass, with the  axis 

collinear with the two primaries, pointing towards the Earth, the  axis is aligned 

with the angular velocity of the primaries 

x̂

ẑ

ˆω z  and the ŷ  axis completes the 

right-hand system (Fig. 1). 

The dynamics of a spacecraft at position  is governed by the well known 

equation:  

r

 2 U   r ω r  a  (1) 

where  , ,
T

x y zr  is the position vector and the effective potential, which takes 

into account gravitational attraction and centrifugal acceleration, is: 

  2 2 2 1 2

1 2

1

2
U x y

r r

      

The two vectors  and  represent the position of the spacecraft with respect to 

the Sun and the Earth, respectively (see 

1r 2r

Fig. 1), and 1, 2   are their respective 

gravitational parameters. 

Equation (1) will be used in its canonical non-dimensional form, which assumes 

1  ,   2 1 2m m m   , and the unit of distance is the separation of the two 

primaries (1 Astronomical Unit). With these assumptions, the position along the 

-axis of  is x̂ 1m  , and the position of  is 2m 1  . Therefore we have 

 1 , ,x y z r  and  1 1 , ,x y z    r . For the Earth-Sun system, 

. 63.0404 10 

In the case of natural motion, the external acceleration term a  is null. If instead 

the spacecraft is equipped with a propulsion system, then  is the acceleration 

provided by that system. In this paper, we will consider a solar sail. In the case of 

a flat, ideal sail, the non-dimensional acceleration can be expressed as (

a

McInnes 

1999): 

  2

12
1

1
ˆ ˆ ˆ

r

 
 a n r n  (2) 
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where  is the unit vector normal to the sail surface and away from the Sun 

( ), and 

n̂

0 1ˆ ˆn r A m    is the lightness number: proportional through 

3 210  kg m1.53    to the area-to-mass ratio of the sailcraft, it represents the 

ratio of solar pressure acceleration to the gravitational acceleration. It is usually 

taken as a technology parameter of the sailcraft, and values ranging from 0 (no 

sail) to 0.05 can be assumed for near- to mid-term technology (Dachwald et al. 

2006). 

Finally, it will become useful to rewrite Eq. (1) as a system of first-order 

equations, introducing the state vector 
T

x y zx y z v v v   s  in the 

following form: 

 
     

 

 

2

13 3 2
1 2 1

2

13 3 2
1 2 1

2

13 3 2
1 2 1

1 1
ˆ ˆ2 1

1 1
ˆ ˆ2

1 1
ˆ ˆ

x

y

z

x y x

y x y

z z

x v

y v

z v

v v x x x n
r r r

v v y y n
r r r

v z n
r r r

    

  

  


 
 


          

             


          

n r

n r

n r











 (3) 
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Fig. 1 Circular restricted three-body problem with solar sail 

1.1 Natural orbits 

Eight-shaped orbits are a particular type of the so called “type C” orbits by 

Kazantzis (1979a), which are symmetric both to the x-y plane and the x-z plane. 

It was also found by Kazantzis (1979b, 1980), following the work by Hénon 

(1974), that families of these types of orbits can be found through continuation, 

x̂

ẑ

ω n̂

2r

1r
ŷ   

r
2m

1m

1 


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. 

and the symmetry properties of eight-shaped orbits can be exploited for their 

design. In fact, each orbit crosses the x-z plane four times in a period, and the x 

axis twice. Fig. 2a represents an eight-shaped orbit after a quarter of its period

One of the intersections in which 0z   (for example when 0z  ) can be taken 

the origin of the orbit, and used for the predictor-corrector method that will be 

explained subsequently. By using the subscript “0” to identi is point, the 

initial state vector on the orbit has the form: 

 0 0 0 00 0 0
T

yx z v

as 

fy th

   s  (4) 

That is, due to the aforementioned symmetry, 0 0 0 0x zy v v   . At the next 

rsection with the x-z plane (subscript “1”), again due to syinte mmetry 

considerations, the state vector is: 

 1 1 1 10 0 0
T

y zx v v   s  (5) 

This point corresponds to a quarter of the orbital period. Once 0 0 0, , yx z v

f the initial 

 are 

chosen such that  has the form of Eq. (5), then an integration o

eriodic, as 

i) we have the initial state 

1s

conditions for a full period guarantees that the orbit is closed, p and h

the symmetry properties mentioned before. 

A predictor-corrector method can be implemented, to find the required initial 

conditions. Let us assume (at a generic step  
0
is  of an 

me 

 

0

eight-shaped orbit, and we would like to find another orbit, belonging to the sa

family, but with a slightly displaced initial position, to be determined: 

 

0

i

 
 

 

0 0

1 0 0
0

0

0

0

i
i

i
y y

x x 
 
 

z z

v v






  
 
 

 
 
 

s  (6) 

The displacements 00 0, , yx z v    are unknown, and some constraint on 0 0,x z   

-z plane. 

ane with

shall be lacement of the initial point on the x introduced to force the disp

ce an angle α For this, we introdu which identifies a direction in the x-z pl  

respect to the +x axis, and then decomposes the displacement 0 0,x z   into a 

component r  along direction α and a component r  perpendicular to it (see 1 2 Fig. 



2b). We can fix the value of 1r , being representative of the spacing between the 

solutions, and the direction   can be guessed from the previous iteration as: 

          1 1
0 0 0 0ar an i i i iz z x x  ct       

For the first iteration, the value of   has to be provided, starting from 

s selected considerations on the dynamical system: for example, if a planar orbit i

as a starting point, then a pure out-of-plane displacement is required for the first 

step, so 2  . 

Through  w α, e can r ite the displacements in position as: 

 

1r , 2r e-wr

     1
0 1 2cos sinix r r   

       1
0 0 1 2sin cosi ir rz z    

 (7) 

With this assump eters are now  1
2 0,i

yr vtion, the unknown param . The natural 

first guess for these parameters is:  1
2 0ir   , which means that the direction of 

motion of the initial point does not rom the previous step; and 0 0yvchange f  , 

t, 

of

i.e. the initial velocity is the same as in the previous orbit (see again Fig

These assumptions are reasonable if the distance 1r  is small enough. At this po

we have a full guess for the initial state on the new orbit. This completes the 

predictor step of the method. 

To determine the actual value

. 2b). 

in

    1 1
2 0,i i

yr v s , the corrector step is employed. This 

. We num

satisfy 

is an iterative procedure on its own erically integrate the equations of 

motion (3), with no sail, starting from the initial condition, until the first 

intersection of the x-z plane. The idea is to adjust these values in order to 

periodicity and symmetry conditions on the new orbit: 

  1 0 0 0, , 0yy x z v   (8) 

 1 0 0 0, , 0yz x z v   (9)  

 1 0 0 0, , 0x yv x z v   (10)  

In e values depend on the variables  these equations, it is written explicitly that thes

of the initial state  1
0
is . The condition (8) is automatically satisfied due to the 

integration stopping condition. The other two conditions can be used to correct 

8 
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02 , yr v  . In general, the state at the end of the integration will not match exactly 

the conditions, thus having: 

  1 2 0, yz r v z1    (11) 

  1 2 0, 1x yv r v vx    (12) 

The correct values of 2 , yr v 0 

2 ,r

 can be found, for example, linearizing 

(Zagouras,Markellos 1977) the periodicity conditions (11)-(12), evaluating the 

derivatives through numerical integration, solving the corresponding system, 

finding updated values of 0yv   and then repeating until 1 1 0xz v  

1010

 within 

a tolerance of  on both the function value and the step size. The numerical 

integration of the equations of motion is made through an explicit Runge-Kutta 

(4,5) formula, implemented in MATLAB ode45 function, using  as relative 

and absolute tolerance. 

1010

After convergence of the corrector step, the initial state of the new orbit  1
0
is  can 

be determined thanks to Eq. (6) and (7), and the following iteration can be started 

with a new predictor step. 

The whole predictor-corrector process is initiated using the initial state  0
0s  on a 

known orbit, and an initial search direction  . For example, it was shown by 

Kazantzis (1979b, 1980) that type-C orbits bifurcate out-of-plane from particular 

planar “vertical critical” orbits, and they have twice the multiplicity (and hence 

twice the period) of the planar orbits from which they bifurcate, when they are 

infinitesimally close to them. In the case of the eight-shaped orbits, the vertical-

critical orbit is one of high amplitude that goes around the Sun, and this can be 

used to initiate the predictor-corrector procedure. The planar vertical critical orbits 

can be computed as described by Hénon (1974). 

It is also known from the literature that the other end of the family does not 

collapse into a planar orbit, but rather into a vertical libration orbit at L1 or L2. 

Libration orbits of infinitesimal amplitude can be determined in the vicinity of the 

libration points through a dynamical system approach (Howell 2001) in a linear 

approximation, or small-amplitude orbits can be computed through a third-order 

Lindstedt-Poincaré method (Archambeau et al. 2011). Either of these methods can 

provide a good approximation for starting the first step of the predictor-corrector 

method. 



Note that the convergence of the corrector step relies on the selection of an 

appropriate value for : within the same orbit family, large values of  may 

suffice for convergence in certain regions of the phase space, while it might be 

required to reduce  in the vicinity of singularities or bifurcations. 

1r 1r

1r

The predictor-corrector procedure described here is different to the one described, 

for example, by Kazantzis (1980). In that work, the parameter  is used for 

continuation: an arbitrary displacement h in this component is set at each 

continuation step. However, as stated in the paper, along the family it might 

happen that  reaches a maximum or a minimum: in that circumstance, it is not 

possible to find any other orbit by increasing (or decreasing respectively) this 

parameter. The author therefore suggests that when this happens, it is necessary to 

switch to another component, 

0z

0z

0x  in this case. However this requires the detection 

of the singularity, which is not easily automated. Instead, with the proposed 

continuation, the direction of displacement of the initial point follows naturally 

the path, without any need of switching. This procedure is similar to the pseudo-

arclength continuation method proposed by Dichmann et al. (2002). 

The reason why it was chosen to decompose the displacement into two 

perpendicular components, rather than for example fixing  and allowing 1r   to 

change, is avoid to converge on solutions whose initial point is in a direction 

perpendicular to the one of the previous step (for example at bifurcations). 

 

ẑ

0yv  

x̂

ŷ
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a) b)  
Fig. 2 (a) A quarter period of an eight-shaped orbit. (b) Continuation method for type-C 
orbit 

2r  

1r
 

0
iz

 1
0
iz 

 
0
ix  1

0
ix   

x̂

ẑ

1x

0z

 0

1 1,y zv v  

x



 

By applying this method, the whole family of eight-shaped orbits at L2 was 

designed. Some of these orbits are plotted in Fig. 3, in terms of their projections 

on the Cartesian orthogonal planes of the synodic frame. In the same figure the 

cone described by the polar axis of the Earth during one full year is plotted. The 

polar axis of the Earth maintains its orientation in an inertial frame (nutation and 

precession of equinoxes are not considered, as they are on a very long time scale), 

and therefore in the synodic reference frame it appears that the same axis has an 

apparent precession. A pole-sitter spacecraft would follow a trajectory on this 

cone, in order to continuously track the polar axis at each instant of time. In the 

case of the eight-shaper orbits, this is not possible; however the objective is to 

follow the cone as much as possible, for a long fraction of the orbit period, such 

that the visibility of the high-latitude regions is maximized and similar to that 

achieved by a pole-sitter. 

It can be seen that the family collapses on L2, with purely vertical orbits, as 

described by Howell (2001). As the amplitude increases, the eight shape becomes 

well defined. Despite the family continuing with increasing z amplitude, we limit 

the amplitude as the distance from the Earth becomes too high for useful 

applications. The complete family is plotted by Kazantzis (1979b). 

Fig. 4 shows the period of the orbits in the family, as function of the z amplitude. 

Again, as predicted in a dynamical system analysis (Howell 2001), the period of 

infinitesimal orbits approximates  . The period then increases with amplitude, 

however it does not reach one year (or 2 ) in the interval of amplitudes 

considered. 
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a)  

b) c)  
Fig. 3 Projections of some orbits of the family of natural eight-shaped orbits at L2, with 
different z amplitudes. (a) x-y plane; (b) x-z plane; (c) y-z plane. Dots are the initial points 
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Fig. 4 Period of natural eight-shaped orbits, as function of the z amplitude 

 

The plots in Fig. 5 show the velocity along one of the orbits described, that with 

greatest amplitude. In particular it can be noted that the spacecraft motion is 

relatively slow around the northern and southern points of the orbit, while it is fast 

while crossing the ecliptic plane. This trend, combined with the shape of the orbit 

itself, justifies the choice of investigating this kind of orbits for polar observation: 
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the spacecraft spends a consistent fraction of the orbital period above either of the 

poles of the Earth. 
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Fig. 5 Velocity vector along a natural eight-shaped orbit. (a) Velocity vector plotted along the 
orbit; (b) velocity components and magnitude for an orbital period. t = 0 corresponds to the 
top point on the orbit 

 

Although the orbits presented here are at Lagrange point L2, the same procedure 

can be used to find orbits at L1. For the range of amplitudes considered here, it is 

found that these orbits are almost symmetrical with respect to the Earth to those at 

L2. For this reason, they are not shown here. Nevertheless, we investigate the L2 

case rather than the L1 case because it is much more interesting when solar-sail-

displaced orbits are considered, as shown in the following section. 

1.2 Sail-displaced orbits 

It is well known that the classical Lagrange points can be displaced if an external 

acceleration term is introduced into the equations of motion, i.e.  in Eq. a (1). This 

is easy to show for example considering a constant and uniform acceleration along 

the x axis; in this case, the collinear Lagrange points shift along the x axis. Fig. 6 

shows the position of the (artificial) Lagrange points L1 and L2 with respect to the 

Earth, for a range of accelerations. 
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Fig. 6 Displacement of L1 and L2 points under a uniform and constant acceleration in the x 
direction 

 

Within the CR3BP including uniform acceleration, it is also possible to generate 

families of libration point orbits, such as halo orbits, around the displaced 

equilibria, as shown by Baig,McInnes (2009). Baoyin,McInnes (2005), and later 

Waters,McInnes (2007) demonstrated that those orbits exist also when a solar sail 

is considered. 

It was mentioned in the Introduction that the analysis is performed for the L2 case. 

This is justified by the fact that, since the solar radiation pressure displaces orbits 

near the collinear equilibria towards the Sun, the orbits are displaced away from 

the Earth at L1, and towards the Earth at L2. The effect is clearly visible 

considering the Lagrange point itself, as in Fig. 6, but also libration point orbits 

(Baig,McInnes 2009). 

In the first instance, we consider the sail with a fixed orientation in the synodic 

reference frame, and in particular with  ˆ 1 0 0
Tn . This assumption is 

justified in two ways. The first is that this sail orientation maximizes the solar 

radiation pressure force and therefore the collinear displacement, for small-

amplitude orbits around Lagrange points. In fact, the sail force is almost uniform 

and therefore the effect is similar to that of a uniform acceleration along the x-

axis. The second reason is that the symmetry properties of the orbit are conserved. 

Note that the sail orientation is only fixed in the synodic frame, however the sail 

rotates with one full revolution every year in an inertial reference frame. 

One way to design solar-sail-displaced orbits is by repeating the same 

continuation procedure, but considering the full equations of motion, including the 

sail acceleration in Eq. (2). Instead, we start from the family of natural orbits 
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found in the previous section, which can be seen as a special case of solar sail 

orbits in which 0  . The parameter   can be used for continuation, therefore 

increasing the lightness number. 

Since all symmetries of the eight-shaped orbits are preserved for the particular 

selected attitude of the solar sail, then the initial state and the state at 4T  is still 

in the form of Eqs. (4)-(5). The difference with respect to the previous case is that, 

instead of using a pre-assigned displacement for the initial point (which was ), 

we perform the continuation on the parameter 

1r

 . Since  cannot be specified a 

priori, then the three non-null initial states in  (Eq. 

1r

0s (4)) are to be determined. 

However, there are only two conditions that are to be satisfied (namely Eqs. (9)-

(10)), since as explained earlier. the integration is stopped the first time that 

. This condition can be reintroduced if the period of the orbit T along the 

family is fixed. In the corrector step, the integration is stopped after 

0y 

4T , and that 

state corresponds now to . Therefore, all three conditions 1s (8)-(10) are not trivial, 

and they can be used to find 0 0 0, , yx z v  . The 33 system can be linearized and 

solved iteratively in the same way as described earlier. 

The next predictor step starts after incrementing   a sufficiently small amount, 

and the procedure is repeated, using the previous initial state as a first guess. The 

increment on   has the same role as  in the previous case: therefore, we ensure 

that it is small enough to guarantee the convergence of each corrector step. This 

predictor-corrector step generates orbits with different lightness numbers, but 

constant period, along the family. 

1r

1.3 Orbit families 

By using the two continuation procedures described here, and switching from one 

to the other when suitable values of the parameters (period or lightness number) 

are met, it is possible to design a number of families with constant lightness 

number (but varying period) and constant period (but varying lightness number). 

For the families with fixed period, some specific values of T need to be selected. 

It is interesting to consider orbits that repeat with the same visibility conditions 

each year. One year is in fact the period of the apparent precession of the polar 

axis of the Earth in the synodic frame. We neglect here the daily rotation of the 
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Earth, because we are not interested in following one specific point on the Earth’s 

surface, but rather an area around the pole. This will become clear when taking 

into account the visibility angles in Section 2. A spacecraft, or a constellation, 

shall then have a suitable period such that the same relative configuration between 

the polar axis and the spacecraft is repeated every year. 

In general, a spacecraft on a periodic orbit repeats the same visibility conditions if 

its orbit has the period of 2  (or 1 year), or any submultiple m. If a constellation 

of n spacecraft are used on the same orbit, and they are equally spaced in time, 

then the period of the orbit T for repeating the same visibility conditions is: 

 2 , 1, 2,3,...
n

T m
m

   

Note however that depending on m and n, each spacecraft is not necessarily in the 

same position every year. 

In this paper, three values of the period are chosen: 2 3, ,3 2T     

(corresponding to 4, 6 and 9 months respectively). In the first and second case, 

one spacecraft is sufficient to repeat the same observation every year 

( ), although more spacecraft can be used for additional coverage. In 

the last case, instead, a minimum of three spacecraft are necessary ( ). 

1, 3,2n m 

3, 4n m 

Periods shorter than 4 months do not seem to be suitable for offering a platform 

for quasi-static polar observation, while longer periods appear in orbits with very 

high z amplitude, and therefore they are not suitable for Earth observation. 

The following figures aim at illustrating the different orbit families that were 

found. The first set of plots, grouped in Fig. 7, refer to the families that were 

found by moving the starting point in the x-z plane, and letting the orbital period 

change, while keeping the sail orientation and lightness number fixed. The plot in 

Fig. 7a represents the x-z synodic plane, and contains the starting points  0 0,x z  

of the orbits of each family, parameterized by lightness number.  Note that the 

coordinates  0 0,x z

0

 are not sufficient to fully define the orbit, but the velocity  

is also needed to describe the initial state  as in Eq. 

0yv

0s (4). Nonetheless, the 

coordinates are helpful to immediately visualize the position of the apex of the 

orbit, around which the spacecraft can observe the polar regions. The first family 

in the plot is   : this is the natural case; no sail is necessary for generating 

these orbits. This coincides with the family presented in Fig. 3. The dashed lines 
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represent the polar axis of the Earth at the northern summer and winter solstices, 

respectively. Gray lines with no markers define the starting points of other 

families, that will be described later in this section, and they are plotted here as a 

reference. 

Fig. 7b is a three-dimensional representation of some orbits for each family, in the 

Sun-Earth synodic reference frame. The shaded conical surface is that described 

by the polar axis of the Earth in a one-year period, and it is plotted as the ideal 

condition for an orbit that could track the cone during the whole year, as for a 

pole-sitter spacecraft. 

The period of each orbit is plotted in Fig. 7c, as a function of the z amplitude, . 

Note however that not all the families are monotonic in , therefore in the same 

family there could be two orbits with the same  but different period (they also 

have different 

0z

0z

0z

0x  and ). As a reference, vertical black dashed lines are drawn 

at the significant values of the period mentioned before. 

0yv
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Fig. 7 Families of orbits with constant sail lightness number β. (a) Initial points in the x-z 
plane. Gray lines represent other families of orbits presented in the paper, and are plotted as 
a reference; (b) Some of the orbits. (c) Period versus z amplitude 

 

The following Fig. 8 describes families of orbits with constant period and sail 

attitude, in which each orbit within a family differ for the sail lightness number. 
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Fig. 8a is a plot of the starting points: families 3 2T   and T   have their 

origin on the natural orbit family 0  . The latter in particular starts exactly at 

L2, as T   is the period of the infinitesimal vertical libration orbit. Instead, the 

family 2 3T   originates at a displaced Lagrange point L2. Some of the orbits 

are plotted in Fig. 8b. The value of   for each orbit can be read from Fig. 8c, 

plotted against . 0z

This completes the overview of the different families of eight-shaped orbits, with 

fixed sail attitude. Additional families can be found for different values of the sail 

attitude, and this is the subject of the next section. 
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Fig. 8 Families of orbits with constant period T. (a) Initial points in the x-z plane. Gray lines 
represent other families of orbits presented in the paper, and are plotted as a reference; (b) 
Some of the orbits. (c) Lightness number β versus z amplitude 
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1.4 Tilted-sail orbits 

It is know from the literature (McInnes et al. 1994) that Lagrange points can be 

displaced out of the ecliptic plane by using a solar sail, if the attitude is such that a 

vertical component of force is generated. It was also shown (Waters,McInnes 

2007) that orbits exist around these artificial equilibrium points, when the sail 

attitude is maintained fixed throughout the orbit. Interestingly, Farrés,Jorba (2010)  

highlighted that  if the sail is tilted in the out-of-plane direction, one loop of a 

figure-eight becomes wider than the other. Therefore, we can envisage using these 

orbits for enhancing the visibility over one of the two hemispheres of the Earth. 

We consider tilting the vector  by adding a z component, and therefore keeping 

the vector in the x-z plane. Again, within each orbit the sail attitude is kept fixed. 

This preserves the symmetry of the dynamical system with respect to the x-z 

plane, while the symmetry with respect to the x-y plane is obviously lost. 

Therefore, formally these orbits fall into the “type-A” category (the same as halo 

orbits). 

n̂

Again we can exploit this symmetry for designing families of orbits. The family is 

found using the angle between the vector  and the positive x-axis direction as a 

continuation parameter, increasing it of a small amount, step by step. Because the 

x-z symmetry is retained, the initial state has still the form in Eq. 

n̂

(4). Again, the 

period is kept fixed but now the state at first intersection with x-z plane cannot be 

used as a condition for solving the system. As for type-A orbits, fixing the period 

T, the initial state has to be integrated until 2T , requiring that the state at this 

point is: 

 2 2 2 20 0 0
T

yx z v   s  (13) 

to preserve the symmetry about x-z. The three equations that will be used to 

determine  are then: 0s

  2 0 0 0, , 0yy x z v   (14) 

  2 0 0 0, , 0x yv x z v   (15) 

  2 0 0 0, , 0z yv x z v   (16) 

It can be seen that, at constant lightness number and period, these points gradually 

displace vertically, then falling back towards the natural case, as the sail is tilted 
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even more and the vector  becomes almost aligned with the z axis (and therefore 

the sail acceleration becomes negligible). 

n̂

As a starting point for the continuation, any of the orbits presented in the previous 

section can be used, in principle. Only some representative families among all the 

possible orbits are presented here: four families with period T  , one with 

2 3T  . Fig. 9a shows once more the starting points in the x-z plane; Fig. 9b is 

a plot of some of the orbits; Fig. 9c allows reading the tilting angle of the sail, 

required by each orbit. 

In particular, Fig. 9a clearly shows that, for the area of interest, the starting points 

of the orbits with a tilted sail are located at a  higher than the corresponding 

point on the orbit with non-tilted sail. 

0z

Fig. 9b shows the actual shape change in the 

orbits due to the sail tilting. It can be noted that the orbits in the family lose their 

figure-eight shape as the sail is tilted, and they collapse into a simple orbit of half 

the period (multiplicity changes from 2 to 1). This makes these orbits less 

interesting for polar observation, and therefore they will not be considered. 

However, another more interesting effect is the fact that the time spent above the 

ecliptic on one of these orbits is longer than that spent below. This can be seen 

from the fraction of the orbit period on each orbit spent above the ecliptic, plotted 

in Fig. 9d. For some families, it can be consistently higher than 50 %, therefore it 

is reasonable to envisage the use of these orbits for continuous observation of the 

North Pole. 

The next section will assess the visibility conditions that can be achieved 

considering five of the orbits presented here, indicated with the letters from A to E 

in the plots. 
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Fig. 9 Families of orbits with constant sail lightness number β and period T. Within each 
family, the sail normal is gradually tilted towards the z direction. (a) Initial points in the x-z 
plane. Gray lines represent other families of orbits presented in the paper, and are plotted as 
a reference; (b) Some of the orbits. (c) Sail normal angle versus z amplitude; (d) Fraction of 
the period spent above the ecliptic versus z amplitude. The plot also shows graphically the 
sail orientation required (in an x-z view) at different points in each family 

2 Visibility analysis 

It was noted that eight-shaped orbits do not allow a continuous view of one of the 

poles, as in the case of stationary spacecraft in the CR3BP or pole-sitters, due to 

their oscillation above and below the ecliptic plane. Therefore, a constellation of 

spacecraft is necessary to guarantee the coverage needed. 

To assess the polar coverage provided by a spacecraft (or a constellation) in a 

displaced eight-shaped orbit, we will make use of two indicators: the first is the 

latitude φ of the footprint of the spacecraft; in general, higher latitude implies 

better polar coverage. An ideal pole-sitter would constantly be at 90    

(Ceriotti,McInnes 2011); however, in other types of orbits, the latitude changes 

throughout the mission and is therefore a function of time. 

The second indicator is the latitude Λ, see Fig. 10. We define the access area as 

the spherical segment on the surface of the Earth that is accessible from the 

spacecraft with a minimum elevation angle α, which is set to the reference value 

of 27° (the elevation of a GEO spacecraft seen from 55° latitude; this is the 

maximum latitude that is conventionally considered accessible from GEO). This 

segment is centered at the footprint of the spacecraft, and may include the pole of 

the Earth. If it does, then we can define the latitude Λ, which limits the spherical 

segment centered at the pole that the spacecraft can continuously access, despite 

the Earth’s daily rotation around its polar axis (see Fig. 10). It can also be 
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25 

geometrically defined as the highest latitude of the bound of the access area, when 

the access area is including the pole. 

Therefore, assuming the spacecraft is in the same position during a day (or its 

position changes only slightly), the green area in Fig. 10 would be accessible at 

any time during that day, while the yellow area cannot see the spacecraft for some 

period due to the rotation of the Earth. Consequently, all the latitudes on the Earth 

above Λ can continuously access the spacecraft with a minimum elevation of ε at 

any time of day. 

It is desirable to have a low (in modulus) value of Λ, as this would mean 

continuous coverage not only of the polar caps, but also lower-latitude regions 

around the pole, and therefore the spacecraft can observe not only to the pole, but 

also lower latitudes of the Earth. 

Note that the angle Λ depends not only on the spacecraft latitude φ, but also on its 

distance from the Earth. Also, if the instant access area does not cover the pole, 

then there is no continuous access area, and Λ cannot be defined. This can happen 

when the latitude φ of the spacecraft is so low (with respect to its distance) that no 

continuous coverage is possible at any latitude. 

It should be noted that the relative position of the spacecraft with respect to the 

Earth changes, and the angle Λ in general varies during each eight-shaped orbit. 

In this case, its maximum (in absolute value) represents the worst case. 

Finally, if a constellation of spacecraft is considered, then the value of Λ to be 

considered at any given time is the lowest (in magnitude) of each one of the 

spacecraft. 
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Fig. 10 Geometry of the spacecraft coverage. The yellow area is the surface accessible with 
minimum elevation angle of α, instantaneously. The green area is the surface that is 
continuously accessible from the spacecraft with the same minimum elevation angle: 
therefore Λ is the minimum latitude of continuous coverage 
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We will now consider the five orbits indicated with the letters A to E in the 

previous figures, and study the visibility in terms of   and   throughout a year: 

in fact, for all the cases considered, the relative position of the formation is one-

year periodic. 

In all the mission scenarios, a constellation of two or three spacecraft, equally 

spaced in time on the orbit, is used. The initial position of the spacecraft formation 

is chosen such that one spacecraft is at the northern intersection with the x-z plane 

at northern summer solstice. For the selected orbits, this choice optimizes the 

visibility conditions of the northern pole while it is illuminated. 

Moreover, in the plots, the time 0t   corresponds to the northern winter solstice, 

i.e. 21st December, when the northern half of the polar axis of the Earth leans 

away from the Sun, and the South Pole is illuminated. 

The first orbit, A, is a natural orbit, with period 3 2T   (9 months). It is then 

the intersection between the two families 0   and 3 2T  . Note that the 

northern apex of the orbit lies above the Earth (although it is never aligned with 

its polar axis). This orbit is chosen because it is a good compromise between 

visibility and repeat time, and has its main advantage in the fact that it does not 

need any low-thrust acceleration. Therefore it does not need a solar sail, and in 

general any propulsion system, apart from the control that might be required to 

counteract perturbations and orbit instability. 



A minimum of three spacecraft are necessary for guaranteeing continuous 

visibility of both poles at any time of the year,  i.e. at any time both poles can be 

accessed by at least one spacecraft in the constellation. The visibility that a 

constellation on this orbit can offer is shown in Fig. 11. It can be seen that the 

highest  during the mission is of order 74°N for the North Pole and 76°S for the 

South Pole. The northern case happens twice a year in May and August, while the 

southern case happens once on 21st December. 


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Fig. 11 Latitude and visibility of three spacecraft on natural orbit A (β = 0, T = 3π/2) 

 

By adding a solar sail, it is possible to move on the 3 2T   family and therefore 

select an orbit whose starting point is close to the position of the polar axis of the 

Earth on the 21st June (northern summer solstice). This allows a spacecraft on this 

orbit to follow closely the polar axis for a longer period (see again Fig. 8b). The 

selected orbit is that with 0.02  , and therefore it is once again at the 

intersection of the two families in the previous figures (identified with B). The 

visibility of three spacecraft on this orbit is represented in Fig. 12. 

From the plots, the advantage of selecting an orbit that reaches the polar axis of 

the Earth on the Sun side is evident: one spacecraft is exactly above the North 

Pole at northern summer (and hence with favorable lighting), and also the 

spacecraft are high in the sky on the South Pole during southern summer. The 

configuration of this orbit, then, is ideal for polar observation in particular in the 

visible range, when either pole is illuminated by the Sun. 
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Fig. 12 Latitude and visibility of three spacecraft on orbit B (T = 3π/2, β = 0.02, sail normal 
along x) 

 

The main drawback of both orbits A and B presented above is the considerable 

distance from the Earth (the distance of the orbit apex from the Earth can be seen 

in Fig. 8). Reducing the period of the orbits allows the spacecraft to be closer, at 

the cost of having shorter intervals in which each spacecraft observes one pole 

continuously. We consider the family of orbits with T   (6 months) and again 

the orbit in which the starting point is aligned with the polar axis on the Sun side, 

which results in 0.026   (see Fig. 13). This is the orbit identified as C 

previously. Even in this case, the visibility conditions are better at the pole that is 

illuminated, however the shorter period of the orbit enforces more frequent 

switching points (6 every year) for continuous polar observation. 

For this orbit, the maximum Λ is of order 77°N on 21st December for the North 

Pole and 75°S twice a year for the South Pole, around end of April and beginning 

of July. 
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Fig. 13 Latitude and visibility of three spacecraft on orbit C (T = π, β = 0.026, sail normal 
along x) 
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The spacecraft can observe the poles even closer by selecting an orbit in the 

family 2 3T   (equivalent to 4 months), although even more switching points 

are necessary (9 in a year). The orbit that crosses the polar axis at solstices is that 

with 0.04  , which is marked with D and its visibility conditions are plotted in 

Fig. 14. For this case, the maximum Λ is of order 73° for both North and South 

Poles at solstices. 
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Fig. 14 Latitude and visibility of three spacecraft on orbit D (T = 2π/3, β = 0.04, sail normal 
along x) 

 

The last orbit we consider is one obtained by tilting the sail normal northwards, 

and therefore displacing the orbit above the ecliptic. As noted earlier, since the 

orbit is not symmetric to the ecliptic plane, it shall be used for having better 

visibility conditions over one of the poles, specifically the North Pole when the 

sail normal is tilted towards the positive z axis. Looking again at the plots in Fig. 

9, we can see that the family , 0.03T   

,T

 is the one that offers the highest 

increase in fraction of the period spend above the ecliptic, while maintaining 

appropriate z amplitude. The family 0.033    spends a longer fraction of 

a period above the ecliptic, but its out-of-plane displacement is such that it cannot 

be used for polar observation. Conversely, the other two families do not benefit as 

much from tilting the sail. 

Within the family we select the orbit identified with E in Fig. 9, as it provided the 

best compromise in terms of visibility, because it is close to the orbit that 

maximizes the fraction of period above the ecliptic (see Fig. 9d) while at the same 

time being close to the polar axis on the Sun side.  
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Since it was shown three spacecraft are sufficient to observe both poles, then we 

shall investigate if it possible to observe continuously one pole with two 

spacecraft only: plots of φ and Λ are shown in Fig. 15. 

The minimum latitude   of either spacecraft is 50°, and the continuous visibility 

latitude  is 66° in the worst case, twice per year, before and after northern 

summer solstice. 



The advantage of this orbit with respect to using the same number of spacecraft in 

a Molniya-type orbit is a much longer period of each spacecraft over the pole, 

therefore reducing consistently the required switching and offering a platform for 

continuous observation with intervals of about 3 months, rather than a few hours. 

The drawback is of course the increased distance at which observations are made. 
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Fig. 15 Latitude and visibility of two spacecraft on orbit E (T = π, β = 0.03, n = [0.8575, 0, 
0.5145]T corresponding to a tilting of 30.96° w.r.t. the positive x axis) 

3 Stability 

Stability is a desirable property of science orbits, which need to be maintained for 

an extended period of time. If an orbit is stable, then in principle no active control 

is needed to maintain the spacecraft on that orbit. Conversely, for an unstable 

orbit, an infinitesimal perturbation in the direction of the unstable eigenvector can 

cause the spacecraft to depart from that orbit indefinitely. 

It is known that collinear equilibrium points are unstable, therefore it is expected 

that infinitesimal orbits around these points are unstable as well. However, as the 

orbit amplitude increases, higher-than-linear order terms start to become 

significant and can change the stability properties of the orbit. For example, 

Baig,McInnes (2009) showed that, despite that small-amplitude displaced halo 
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orbits are unstable, as the amplitude increases, a range of stable orbits is found. 

We therefore investigate here if the same happens for natural and displaced eight-

shaped orbits. 

To assess the stability of a periodic solution of a dynamical system, we make use 

of the Floquet theory. 

Given a non-linear first-order dynamical system of differential equations, 

, such as Eq.  s f s (3), let  ts  be a periodic solution of period T, such that: 

   t t s s T . By introducing a small perturbation on the states  s , and 

expressing a general solution as  s s s , we can linearize the system around 

the periodic solution: 

  




 s s

f
s

s
 s  (17) 

The matrix  t









 s s

f
A

s
 is simply the Jacobian   J f s  of the system 

evaluated along the periodic solution, and therefore it is a function of time. Eq. 

(17) can be written as a non-autonomous, periodic linear system, that represents 

the variations in the vicinity of s : 

  t s A s  

The state transition matrix  tΦ  is defined as the solution of the differential 

system: 

     , 0t Φ A Φ Φ I  (18) 

and allows us to find the states of the system after some time t when an arbitrary 

small perturbation is applied to  0s . The state transition matrix evaluated at 

exactly one period T is the monodromy matrix,  TM Φ . According to Floquet 

theory (Thurman,Worfolk 1996), the first order linear stability properties of a 

periodic orbit are described by the eigenvalues of the monodromy matrix M . 

The Jacobian  can computed analytically for the system in Eq. A

 A

(3), and it can be 

shown that : therefore, it can be demonstrated through Louiville’s 

theorem that the eigenvalues of the monodromy matrix occur in reciprocal pairs 

(

tr 0

Broucke et al. 1976). In particular, the orbit is stable when all three pairs of 

eigenvalues lie on the unit circle. Instead, the orbit is unstable if there is pair of 

real eigenvalues: 
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such that 1r 

r

. Therefore to assess the stability of the orbits, we can monitor the 

magnitude of  , being stable if it is equal to 1, or unstable if greater than one. 

Fig. 16 shows the magnitude of r  for each orbit in the families identified earlier, 

plotted as a function of the initial state  of each orbit. It is found that that all the 

orbits are unstable, as 

0z

1r  . However, the figure also shows that the sail has, in 

some circumstances, a beneficial effect on the stability of the orbits. For example, 

let us observe the families with constant   in Fig. 16a. It is clear that for a certain 

range of amplitudes, the maximum eigenvalue magnitude becomes smaller than 

10, being up to three orders of magnitude smaller than the one of an orbit with the 

same amplitude, but no solar sail. The same effect is visible in the other two plots 

of the figure: in Fig. 16b, the orbits with lowest maximum eigenvalue magnitude 

are those with higher values of   (compare with Fig. 8c), and in Fig. 16c, the 

family with 0.033   has the best stability values, even if its z-amplitude is 

small. Also note that, in Fig. 16a, only the orbits in the family 0.05   with 

3 2T   are plotted, consistently with Fig. 7a. 
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Fig. 16 Magnitude of the maximum eigenvalue of the monodromy matrix (in logarithmic 
scale), as function of the z amplitude. (a) Families of orbits with constant β; (b) Families of 
orbits with constant T; (c) Families of orbits with constant T and β, varying the sail tilting 
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Limiting our analysis to the families with sail perpendicular to x, and in order to 

provide a better understanding of their stability varying the   values, we consider 

here three sets of orbits in which the z-amplitude (i.e. ) is fixed, and the value 

of the lightness number is varied through the family with a constant step, from 0 

to 0.05. This corresponds to a set of starting points that define a horizontal 

segment in 

0z

Fig. 7a. As before, we follow the evolution of the eigenvalue 1r  , 

along each family, as an indicator of the stability, and this is plotted for three 



values of  in 0z Fig. 17. These plots highlight that for example, along the family 

, the orbits have a minimum of 0 0.01z  r  at 0.036   and  (with 

period ). Therefore, although stability is never reached, the highly 

unstable nature of eight-shaped orbits is mostly reduced around this value of the 

lightness number. As the z-amplitude increases, the variation of 

0 0.987x 

r

3 .815T

  along the 

families becomes less sensitive, as can be seen from the cases  and 

. 
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Fig. 17 Magnitude of the maximum eigenvalue of the monodromy matrix (in logarithmic 
scale) for families of orbits with constant z-amplitude. (a) As a function of the lightness 
number; (b) As a function of x0. 

3.1 Orbit control 

Since all the orbits resulted to be linearly unstable, a spacecraft would necessarily 

need a form of active feedback control, in order to stay on these orbits for a 

considerable amount of time. Devising a complete, optimal control strategy for 

these kinds of orbits is beyond the scope of this paper. Nonetheless, it is 
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interesting to assess the difficulties which might arise when a control strategy is 

put in practice. 

The purpose of a feedback control is to provide a steering law for the solar sail 

which essentially guarantees that the spacecraft stays in the vicinity of the 

reference solution even when orbit instability, external perturbations and 

displacements from initial conditions are taken into account. 

In order to have a preliminary estimation of it, we designed and implemented an 

LQR. The controller is based on the work developed by Ceriotti,McInnes (2010); 

however, in that work, an additional thruster was used for the control of the 

spacecraft. Here, we would like to assess the controllability of the spacecraft by 

using the solar sail only. 
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Let us consider again the dynamics of the solar sail in the three-body problem as 

described by Eq. (3), in which the solar sail attitude and lightness number are used 

as control parameters u , and let us consider a solution of it  that will be 

used as a reference, to be tracked by the spacecraft. In all the orbits presented 

before, the solar sail has constant attitude and lightness number, therefore the 

reference control vector is simply constant with time. 

   ,ts u

In general, when the dynamics is integrated in time starting from the initial 

conditions  and the control law  0s  tu , the spacecraft will depart from the 

reference states , due to the instabilities of the orbit. Let us define the state 

error 

 ts

 s  as the difference between the reference state and the real state at any 

given time. Assuming that the real state is not too far from the reference one, and 

that the evolution of the dynamics of the system is slow enough, then at each 

instant of time the system can be linearised around the reference state and control, 

obtaining: 

    s A s B u  

This system represents the variations around the reference state and control at any 

given time, and  is the feedback control (to be determined), i.e. the quantity 

that, when added to the reference control 

 tu

 tu , will bring the spacecraft back to 

reference conditions (within linear and time-invariant approximation). If we 

introduce the functional: 

  
0

T TJ    


  s Q s u R u dt  (19) 



then the minimum of this functional guarantees that the feedback control strategy 

 is such that both the state error and the feedback control at infinity are 

zero, and therefore the spacecraft is back to the reference conditions. 

 tu

We now assume a feedback control proportional to the state error: 

   u K s  (20) 

It can be shown that the minimum of functional (19) can be found explicitly by 

solving the algebraic Riccati equation (Bryson,Ho 1975), which provides the 

optimal values of the gain matrix . K

Note that, despite the linear system is time-invariant, the linearisation and the 

solution of the Riccati equation is performed at each instant of time, therefore 

resulting in a time-variant gain matrix. 

In the control method implemented in this work, the vector u  contains two 

Cartesian components of the unit vector  in the plane perpendicular to the sun 

line (this choice is made to avoid singularities), and the lightness number 

n̂

  of the 

solar sail, for a total of three control variables. 

Steering a solar sail is a standard control method, which has been investigated in 

the literature extensively. In addition to the actuators commonly used on 

conventional spacecraft (inertia wheels, thrusters), sail steering can also be 

achieved exploiting the sail itself. Several methods were proposed, including 

shifting of the center of mass with respect to the center of pressure through 

moving masses (Lappas et al. 2005), deployment of control vanes at the edge of 

the sail (Wie 2004), and also differential change of reflectivity on opposite sides 

of the sail through photo-chromic areas (Funase et al. 2010). These areas are 

covered with a special material that can change its reflectivity coefficient within a 

given range according to a current that is applied to it. 

The change of lightness number can essentially be achieved in two ways: varying 

the area of the sail or its reflectivity. The first method would make use of the same 

reflecting control vanes used for attitude control, but they would be deployed 

symmetrically; the latter method would make use of the photo-chromic area on 

the sail, again changing their reflectivity symmetrically. 

This control method was implemented in MATLAB/Simulink and applied to the 

orbits B, C, D (orbit A has no sail), and it stabilized the system with small control 

effort. We also assessed the capability of the controlled system to come back to 

the reference conditions, when the initial state is perturbed. This can be 
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interpreted as a step response of the controlled system, when the step is applied at 

time , and therefore at the northern apex of the orbits. We considered 

displacements in one component of the initial state vector, of  in position or 

 in velocity. This case models, for example, an error at the injection point. For 

the three mentioned orbits, the control guarantees that the system converge to 

reference conditions. The amount of time needed to bring the state error below a 

given threshold depends obviously not only on the gain matrices, but also on the 

reference orbit, and it may require more than one orbital period. 

0t 
410

310

Fig. 18 shows the 

results for orbit B when the x-component of the initial state is displaced by 410 . 

The two plots in Fig. 18a show the state error (position and velocity), and it is 

clearly seen the initial error in position, and the convergence to reference values 

within two orbital periods. Note that in order to correct the position, a transient 

error in the velocity has to be introduced. The two plots in Fig. 18b show the 

control effort needed; in particular, the top plot shows the angle between the sail 

normal when feedback control is added, and the reference (i.e. along the x-axis). 

Note that this does not completely define the sail normal direction, however it is a 

measure of the tilting necessary to control the spacecraft, and therefore the control 

effort. The bottom plot in Fig. 18b shows the controlled lightness number (the 

dashed line is the reference – constant – lightness number). These two plots 

highlight that a tilting of less than 2 deg and a small change in reflectivity are 

sufficient to control the system, in presence of the step disturbance assumed 

before. Finally, Fig. 18c is a plot of the controlled trajectory (blue line), the 

reference orbit (red line), and the uncontrolled trajectory, i.e. the result of the 

integration of the equations of motion for one orbital period, without using the 

feedback control, and starting from the same displaced initial conditions. It is 

clear that the spacecraft diverges from the reference states well before one orbital 

period.  
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Fig. 18 Feedback control applied to orbit B. (a) State error (reference with respect to real); 
(b) Sail normal tilting with respect to the reference and controlled lightness number 
(reference dashed); (c) Controlled trajectory, reference and uncontrolled trajectory after one 
period. 

 

A less advanced control method would involve the change in attitude only, with 

no change in sail reflectivity. This method would not need control vanes, but just 

tilting masses on the spacecraft bus. Although it was found that the linear system 

is still controllable (in terms of the controllability matrix), it was not possible to 

find weights such that the control loop stabilized the non-linear dynamics on a 
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wide range of reference orbits. It is suspected that the non-linear dynamics of the 

eight-shaped orbits is too fast near the intersection point with the x-axis for the 

time-invariant approximation to be valid. A non-linear, time-variant control might 

be able to stabilize the system. Another type of sail control, based on the study of 

the manifolds around a halo orbits, was demonstrated successful in the literature 

and will be briefly presented in the following section. 

4 Invariant manifolds 

The instability of the presented orbits implies the existence of unstable invariant 

manifolds, which can be exploited for low-energy transfers to those orbits. 

Invariant manifolds associated with a periodic orbit are surfaces (in the state 

space) generated by natural trajectories that wind from or onto a periodic orbit. 

These trajectories are found by integrating an initial condition, obtained by 

perturbing the state vector at any point along the orbit, in particular directions. 

The directions are found by linearizing the system, and computing the eigenvalues 

and eigenvectors of the Jacobian matrix at a given time and state along the 

periodic orbit. The eigenvector associated with the real eigenvalue 1 1   gives 

the unstable direction. The eigenvector associated with the real eigenvalue 2 1   

gives the stable direction. 

A first-order approximation for the initial conditions of the manifold can be found 

using the following procedure, which is summarized here and explained in detail 

by Koon et al. (2006). 

We find the manifold at time 0 and state  0 0s s  of the periodic orbit. First, we 

compute the state transition matrix over the orbit  tΦ

1

, and the monodromy 

matrix , as detailed earlier. Then, we compute the eigenvalues of this 

matrix, and identify the real couple 

 TM Φ

1  , 2 1   and associated eigenvectors,  

and 

0
uv

0
sv . The linear approximations of the initial states on the unstable ( ) and 

stable (

0
us

0
ss ) manifolds are given by: 

 0
0 0

0

u
u

u
  

v
s s

v
 

 0
0 0

0

s
s

s
  

v
s s

v
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where the +/- denote the two possible directions of the perturbation. Here   is a 

small positive number. 

Finally, the manifolds can be computed at any time t   on the periodic orbit 

simply by transporting the stable and unstable directions through the state 

transition matrix, such that: 

     0
u u v Φ v  

and the same for the stable direction. 

A note on the magnitude of  : it shall be small enough to fall into the linear 

approximation of the system, however not too small otherwise the time of flight 

becomes too large (Koon et al. 2006). In this paper 200 km   was used (Howell 

et al. 1994). 

By integrating  and us us  forward in time using the full equations of motion, we 

obtain two trajectories that wind off the periodic orbit. The same behavior is 

obtained integrating ss  and ss  backward in time. Instead, if  and  are 

integrated backward in time, the trajectory winds onto the periodic orbit; the same 

behavior is obtained integrating 

us us

ss  and ss  forward in time. 

Therefore, we can exploit the stable manifolds for designing transfers to the 

periodic orbit; assume that stable manifolds are designed along the whole periodic 

orbit, and integrated backward in time, find a number of trajectories that wind off 

the periodic orbit. If the spacecraft is injected onto one of these trajectories 

(forwards in time), the method guarantees that it will asymptotically reach the 

periodic orbit without any additional maneuvers. 

Particularly interesting are those unstable manifold trajectories that, when 

integrated backwards, pass the vicinity of the Earth, at a distance that is 

comparable to low Earth orbit. This is because the spacecraft can be injected 

directly onto the manifold from Earth, for example using a launcher upper stage, 

without the need for any additional deep space maneuvers. This procedure was 

used to find transfer trajectories to halo orbits (Gómez et al. 1993). Howell et al. 

(1994) showed that, if a manifold passes close enough to the Earth, then a very 

small maneuver applied at the insertion into periodic orbit is sufficient to change 

the minimum distance to the Earth, and tune it for a selected altitude. This can be 

achieved with a simple predictor-corrector method. Alternatively, low-thrust 
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propulsion has also been used to find optimal transfers to eight-shaped orbits 

(Senent et al. 2005). 

In this paper, we will only study the manifolds and their distance to the Earth, 

without any additional maneuvers, assuming that the same procedure can be 

applied with a very small amount of additional propellant, and therefore without 

changing substantially the cost of the transfer. 

 

s
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Fig. 19 Stable manifolds (Ws) wind onto the periodic orbit when integrated forward in time. 
On the contrary, unstable manifolds (Wu) diverge from periodic orbit when integrated 
forward. These properties are reversed if the integration is performed backward in time. 
From (Koon et al. 2006) 

In this paper we also assume that the sail, when present, is deployed once the 

spacecraft reaches the periodic orbit. Therefore, initial conditions of the manifolds 

are computed on the periodic orbit by using the full equations of motion, 

including the sail acceleration. However, the propagation of the manifold is then 

performed with : thus, it is worth underlining that the manifolds that are 

found do not follow the same dynamics as the periodic orbit, and therefore strictly 

speaking they are not the manifolds associated to that orbit, except for the natural 

orbit family. 

0a

We compute and integrate backwards manifolds for all the orbits presented 

earlier, taking a number of points along each orbit. The integration time was set to 

one year, to limit the transfer time. 

The following figures represent, for each orbit, the closest distance to the Earth 

that it is possible to achieve by following one of its manifolds. This value is 

plotted on the x axis (in logarithmic scale) versus  of each orbit (on the y axis). 

The dashed black line at 185 km above the Earth represents the altitude of a 

hypothetical low Earth orbit, in which the spacecraft could be injected after 

launch. If one of the manifolds crosses this altitude, then a single upper stage is 

enough to inject the spacecraft onto the manifold. The spacecraft will then 
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naturally move towards the target orbit. Once the insertion point is reached, the 

sail can be deployed and the periodic eight-shaped orbit achieved. 

Fig. 20a shows the families with constant β. For all the families (other than 

0.05  , whose shape makes it unsuitable for Earth observation), manifold 

transfer is possible to some orbits with  in the range 0z  0.004,0.01 . When 

, no manifold passes in the vicinity of the Earth. 0 0.01z 

For the three families with constant period, see Fig. 20b, manifold transfers are 

possible for some orbits in the range  0 0.006,0.011z  , or when the z amplitude 

is very limited, but these orbits are not interesting for polar observation. 

The behavior of the manifolds of the orbits generated by tilting the solar sail is 

more disordered. As can be seen in Fig. 20c, small variations in the orbit may 

generate manifolds that collide with the Earth, or pass far away from it. 
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Fig. 20 Minimum distance to the Earth that a manifold can reach, departing from any point 
on the orbit, plotted versus the z amplitude of the orbit. (a) Families of orbits with constant 
β; (b) Families of orbits with constant T; (c) Families of orbits with constant T and β, varying 
the sail tilting 

 

Considering the five orbits selected before, it is possible to conclude from the 

plots that manifold transfers to orbit A and B would certainly require a maneuver 

at the insertion point to be used, or a different transfer strategy has to be designed. 

Orbit C and orbit D do not have crossing points with LEO, however their 

manifolds pass very close to it, and therefore it is expected that a small maneuver 

(of the order of meters per second) at insertion point is sufficient to reach the LEO 

(Howell et al. 1994). Instead, natural transfers to orbit E are feasible, selecting the 

appropriate manifold on that orbit. 

Some plots of manifolds are provided here, to illustrate the type of transfers that 

they would enable. The three plots in Fig. 21 show the manifolds that are 

generated by three orbits in the natural family ( 0  ). It is possible to see that for 

a particular amplitude of the orbit , i.e. around 0.01, the manifolds pass in the 

vicinity of the Earth. This corresponds to the minimum distance plotted in 

0z

Fig. 20. 

Fig. 22 shows a trajectory that constitutes a possible transfer to orbit E. The 

insertion point on the orbit is highlighted with a star. 
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Fig. 21 Manifolds of three eight-shaped orbits of the natural family, of different z amplitude: 
(a) z0 = 0.0069; (b) z0 = 0.0098; (c) z0 = 0.0106. Manifolds are in solid color up to the closest 
point to the Earth within one year 
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Fig. 22 A possible manifold transfer to orbit E. Transfer time is 245 days 

4.1 Orbit control through unstable manifolds 

The linearised dynamics around the orbits, and the study of the stable/unstable 

manifolds, can be the basis of alternative control strategies to the LQR. By 

investigating sail-displaced halo orbits, Farrés,Jorba (2012) proposed the method 

summarized here: the sail is kept at the reference orientation until the spacecraft, 

by following the natural evolution of the unstable manifold, will start to diverge 

from the reference orbit. At this point, a different sail orientation is sought, and 

therefore the dynamics of the system is changed, such that the spacecraft will be 

on a slightly different orbit, whose unstable manifold winds onto the original 

reference orbit. At this point, once again, the sail orientation is kept fixed. The 

spacecraft will eventually reach the reference orbit, at which point the sail is tilted 

again to the original orientation, and the process is repeated. This method was 

shown to be successfully applicable to a range of sail-displaced halo orbits, even 

when the full non-linear dynamics is used to propagate the spacecraft motion. 

Note that the structure of the monodromy matrix for the eight-shaped orbits is 

similar to that of the halo orbits, in particular involving two real eigenvalues 

associated with the stable/unstable manifold directions, as shown before. Due to 

this similarity, it is expected that the control technique proposed by Farrés,Jorba 

(2012) would be applicable for eight-shaped orbits. Current work is focusing on 

applying this type of control, and results on the controllability using this strategy 

will be the subject of a following publication. 
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Conclusion 

We have presented an overview of families of eight-shaped orbits that could be 

used for continuous Earth polar coverage. The orbits are either natural or 

displaced employing a sail of relatively modest lightness number (< 0.05). Long 

mission lifetimes can be achieved, as no propellant is necessary, and therefore, 

they constitute a nearer-term alternative to proposed missions such as Statites and 

pole-sitters. 

Continuation methods were implemented and described, in order to construct 

families of orbits with varying period, lightness number or sail attitude. Due to the 

oscillation above and below the ecliptic plane, at least three spacecraft are 

required for continuous observation of both poles, and two for one pole only. 

By selecting specific orbits, continuous visibility to latitudes down to 70° at any 

time of the day and year is possible, while visibility at even lower latitudes is 

available in particular seasons (when the poles are illuminated, for example). 

Furthermore, it is possible to select the period such that the visibility conditions 

repeat every year. 

All natural and displaced orbits are found to be unstable, and a linear quadratic 

regulator (LQR) was developed to show that is possible to control a spacecraft 

with modest effort. The instability was also exploited to design stable manifolds, 

which could represent an option for transferring from a low Earth orbit to the 

eight-shaped orbit with a single manifold injection maneuver. It was found that 

some of the orbits offer this possibility. 

Future work will focus on two topics: the first is to investigate if it is possible to 

steer to solar sail actively along the orbit, in order to optimize the visibility 

conditions. The second is to design optimal sail transfers to those eight-shaped 

orbits in which the manifolds do not pass near the Earth. 
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