101 research outputs found

    Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups

    Full text link
    We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes by an extra "dilatonic" coordinate, whose rotation, Lorentz and conformal groups are SO(d-1), SO(d-1,1) XSO(1,1) and SO(d,2)XSO(2,1), respectively. The generalized spacetimes described by simple Jordan algebras of degree three correspond to extensions of Minkowskian spacetimes in the critical dimensions (d=3,4,6,10) by a dilatonic and extra (2,4,8,16) commuting spinorial coordinates, respectively. The Freudenthal triple systems defined over these Jordan algebras describe conformally covariant phase spaces. Following hep-th/0008063, we give a unified geometric realization of the quasiconformal groups that act on their conformal phase spaces extended by an extra "cocycle" coordinate. For the generic Jordan family the quasiconformal groups are SO(d+2,4), whose minimal unitary realizations are given. The minimal unitary representations of the quasiconformal groups F_4(4), E_6(2), E_7(-5) and E_8(-24) of the simple Jordan family were given in our earlier work hep-th/0409272.Comment: A typo in equation (37) corrected and missing titles of some references added. Version to be published in JHEP. 38 pages, latex fil

    Donor states in modulation-doped Si/SiGe heterostructures

    Full text link
    We present a unified approach for calculating the properties of shallow donors inside or outside heterostructure quantum wells. The method allows us to obtain not only the binding energies of all localized states of any symmetry, but also the energy width of the resonant states which may appear when a localized state becomes degenerate with the continuous quantum well subbands. The approach is non-variational, and we are therefore also able to evaluate the wave functions. This is used to calculate the optical absorption spectrum, which is strongly non-isotropic due to the selection rules. The results obtained from calculations for Si/Si1x_{1-x}Gex_x quantum wells allow us to present the general behavior of the impurity states, as the donor position is varied from the center of the well to deep inside the barrier. The influence on the donor ground state from both the central-cell effect and the strain arising from the lattice mismatch is carefully considered.Comment: 17 pages, 10 figure

    Learning to collaborate: Can young children develop better communication strategies through collaboration with a more popular peer

    Get PDF
    Unpopular children are known to have poor communication skills and experience difficulty in collaborative situations. This study investigated whether pairing unpopular, 5 to 6 year-old, children with a more popular peer would promote more effective collaboration. The study also investigated differences in popular and unpopular children's verbal and non-verbal communication. Thirty-six girls and 36 boys were placed in one of 12 popular, 12 unpopular or 12 mixed pairs. There were no mixed gender pairs. Children were filmed playing a collaborative game. Collaboration in popular pairs was more successful and less disputational than in unpopular pairs. Boys in unpopular pairs broke the rules of the game more often, argued more and did not monitoring their partners' facial expressions effectively. With popular partners they argued less, were more likely to elaborate disagreements, looked at their partner for longer, smiled more and were more likely to offer him a small toy. Unpopular girls' interactions were not markedly disruptive but they clearly benefited from being paired with a child with good communication skills. Popular girls modified their behaviour to take into account an unpopular partner's need for support. These findings suggest that pairing popular and unpopular children may be a useful classroom organisation strategy

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    Get PDF
    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb-1 collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445–3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to the strong coupling constant αS is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of αS(MZ)=0.1171±0.0013(exp)-0.0047+0.0073(theo)
    corecore