68 research outputs found

    The Resonance Frequency Shift, Pattern Formation, and Dynamical Network Reorganization via Sub-Threshold Input

    Get PDF
    We describe a novel mechanism that mediates the rapid and selective pattern formation of neuronal network activity in response to changing correlations of sub-threshold level input. The mechanism is based on the classical resonance and experimentally observed phenomena that the resonance frequency of a neuron shifts as a function of membrane depolarization. As the neurons receive varying sub-threshold input, their natural frequency is shifted in and out of its resonance range. In response, the neuron fires a sequence of action potentials, corresponding to the specific values of signal currents, in a highly organized manner. We show that this mechanism provides for the selective activation and phase locking of the cells in the network, underlying input-correlated spatio-temporal pattern formation, and could be the basis for reliable spike-timing dependent plasticity. We compare the selectivity and efficiency of this pattern formation to a supra-threshold network activation and a non-resonating network/neuron model to demonstrate that the resonance mechanism is the most effective. Finally we show that this process might be the basis of the phase precession phenomenon observed during firing of hippocampal place cells, and that it may underlie the active switching of neuronal networks to locking at various frequencies

    80Se(n,?) cross-section measurement at CERN n TOF

    Get PDF
    Radiative neutron capture cross section measurements are of fundamental importance for the study of the slow neutron capture (s-) process of nucleosynthesis. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. Particularly relevant are branching nuclei along the s-process path, which are sensitive to the physical conditions of the stellar environment. One such example is the branching at 79^{79}Se (3.27 × 105^{5} y), which shows a thermally dependent β-decay rate. However, an astrophysically consistent interpretation requires also the knowledge of the closest neighbour isotopes involved. In particular, the 80^{80}Se(n,γ) cross section directly affects the stellar yield of the "cold" branch leading to the formation of the s-only 82^{82}Kr. Experimentally, there exists only one previous measurement on 80^{80}Se using the time of flight (TOF) technique. However, the latter suffers from some limitations that are described in this presentation. These drawbacks have been significantly improved in a recent measurement at CERN n TOF. This contribution presents a summary of the latter measurement and the status of the data analysis

    Neutron capture measurement at the n TOF facility of the 204Tl and 205Tl s-process branching points

    Get PDF
    Neutron capture cross sections are one of the fundamental nuclear data in the study of the s (slow) process of nucleosynthesis. More interestingly, the competition between the capture and the decay rates in some unstable nuclei determines the local isotopic abundance pattern. Since decay rates are often sensible to temperature and electron density, the study of the nuclear properties of these nuclei can provide valuable constraints to the physical magnitudes of the nucleosynthesis stellar environment. Here we report on the capture cross section measurement of two thallium isotopes, 204^{204}Tl and 205^{205}Tl performed by the time-of-flight technique at the n TOF facility at CERN. At some particular stellar s-process environments, the decay of both nuclei is strongly enhanced, and determines decisively the abundance of two s-only isotopes of lead, 204^{204}Pb and 205^{205}Pb. The latter, as a long-lived radioactive nucleus, has potential use as a chronometer of the last s-process events that contributed to final solar isotopic abundances

    Search for Supersymmetry in pp Collisions at root s=13 TeV in the Single-Lepton Final State Using the Sum of Masses of Large-Radius Jets

    Get PDF
    Peer reviewe

    Measurement of the B-+/- Meson Nuclear Modification Factor in Pb-Pb Collisions at root s(NN)=5.02 TeV

    Get PDF
    Peer reviewe

    Search for the bcb_c meson in hadronic Z decays

    Get PDF
    A search for the Bc meson decaying into the channels J/psi pi+ and J/psi l nu (l = e or mu) is performed in a sample of 3.9 million hadronic Z decays collected by the ALEPH detector. This search results in the observation of 0 and 2 candidates in each of these channels, respectively, while 0.44 and 0.81 background events are expected. The following 90\% confidence level upper limits are derived: Br(Z->Bc X)/Br(Z->q q )*Br(Bc->J/psi pi+) 3.6 10^-5 Br(Z->Bc X)/Br(Z->q q )*Br(Bc->J/psi l nu) 5.2 10^-5 An additional Bc->J/psi(e+e-) mu nu candidate with very low background probability, found in an independent analysis, is also described in detail

    Study of muon-pair production at centre-of-mass energies from 20 to 136 GeV with the Aleph detector

    No full text
    The total cross section and the forward-backward asymmetry for the process e+eμ+μ(nγ)e^+ e^- \rightarrow \mu^+ \mu^- (n \gamma) are measured in the energy range 20-136 GeV by reconstructing the effective centre-of-mass energy after initial state radiation. The analysis is based on the data recorded with the ALEPH detector at LEP between 1990 and 1995, corresponding to a total integrated luminosity of 143.5 pb1\mathrm{pb}^{-1}. Two different approaches are used: in the first one an exclusive selection of events with hard initial state radiation in the energy range 20-88 GeV is directly compared with the Standard Model predictions showing good agreement. In the second one, all events are used to obtain a precise measurement of the energy dependence of σ0\sigma^0 and AFB0A_{\mathrm{FB}}^0 from a model independent fit, enabling constraints to be placed on models with extra Z bosons
    corecore