229 research outputs found

    Canopy Resistance as Affected by Soil and Meteorological Factors in Potato

    Get PDF
    Precision irrigation requires a method of quantifying the crop water status or root zone depletion of water to determine when and how much water to apply to the soil. Changes in canopy resistance (rc) and canopy temperatures have the potential of being used as a crop water status indicator for irrigation management. A study was conducted on potato (Solanum tuberosum L.) grown in northern Egypt at Shibin El-Kom on an alluvial loamy soil for winter (20 Sept. 2001 through 20 Jan. 2002) and spring (1 Feb. 2002 through 20 May 2002) seasons to determine if rc derived from energy balance and plant parameters could be used to determine the onset of water stress and the amount of water required to refill the soil profile. Diurnal rc was determined for well-watered conditions and achieved minimum values of 20 and 10 s m-1 at noontime during winter and spring periods, environmenrespectively. A power relationship of -0.86 for well-watered conditions was developed between rc and net radiation (Rn) at various plant growth stages. In deficit soil water conditions, rc increased linearly with decreasing available soil water (ASW), with a change in potato rc of 0.75 and 0.39 s m-1 per percentage ASW for 1 and 2 MJ m-2 h-1 of Rn at midgrowth, respectively. A ratio of actual/potential canopy resistance (rc/rcp) was derived to normalize the meteorological differences between growing seasons. This ratio was 2.5 when 50% of ASW was removed and can be used as a parameter to determine the need for irrigations using weather factors and canopy temperature. Canopy resistance increased linearly with increasing soil solution salinity, electrical conductivity, when the soil solution was above the threshold soil salinity value. A ratio of rc/rcp was found to normalize the effects of different environments across saline and water deficit conditions

    Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context

    Get PDF
    Large-scale millennial length Northern Hemisphere (NH) temperature reconstructions have been progressively improved over the last 20 years as new datasets have been developed. This paper, and its companion (Part II, Anchukaitis et al. in prep), details the latest tree-ring (TR) based NH land air temperature reconstruction from a temporal and spatial perspective. This work is the first product of a consortium called N-TREND (Northern Hemisphere Tree-Ring Network Development) which brings together dendroclimatologists to identify a collective strategy for improving large-scale summer temperature reconstructions. The new reconstruction, N-TREND2015, utilises 54 records, a significant expansion compared with previous TR studies, and yields an improved reconstruction with stronger statistical calibration metrics. N-TREND2015 is relatively insensitive to the compositing method and spatial weighting used and validation metrics indicate that the new record portrays reasonable coherence with large scale summer temperatures and is robust at all time-scales from 918 to 2004 where at least 3 TR records exist from each major continental mass. N-TREND2015 indicates a longer and warmer medieval period (∼900–1170) than portrayed by previous TR NH reconstructions and by the CMIP5 model ensemble, but with better overall agreement between records for the last 600 years. Future dendroclimatic projects should focus on developing new long records from data-sparse regions such as North America and eastern Eurasia as well as ensuring the measurement of parameters related to latewood density to complement ring-width records which can improve local based calibration substantially

    Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization

    Get PDF
    Research PaperThe A&P approach, developed by Allen and Pereira (2009), estimates single and basal crop coefficients (Kc and Kcb) from the observed fraction of ground cover (fc) and crop height (h). The practical application of the A&P for several crops was reviewed and tested in a companion paper (Pereira et al., 2020). The current study further addresses the derivation of optimal values for A&P parameter values representing canopy transparency (ML) and stomatal adjustment (Fr), and tests the resulting model performance. Values reported in literature of ML and Fr were analysed. Optimal ML and Fr values were derived by a numerical search that minimized the differences between Kcb A&P with standard Kcb for vegetable, field, and fruit crops as tabulated by Pereira et al. (2021a, 2021b) and Rallo et al. (2021). Sources for fc were literature reviews supplemented by a remote sensing survey. Computed Kcb and Kc for mid- and end-season together with associated parameters values were tabulated. To improve the usability of the ML and Fr parameters a cross validation was performed, which consisted of the linear regression between Kcb computed by A&P and observed Kcb relative to independent data sets obtained from field observations. Results show that both series of Kcb match well, with regression coefficients very close to 1.0, coefficients of determination near 1.0, and root mean square errors (RMSE) of 0.06 for the annual crops and RMSE = 0.07 for the trees and vines. These errors represent less than 10% of most of the computed tabulated Kcb. The tabulated Fr and ML of this paper can be regarded as defaults to support A&P field practice when observations of fc and h are performed. Therefore, the A&P approach shows to be appropriate for use in irrigation scheduling and planning when fc and h are observed using ground and/or remote sensing, hence supporting irrigation water savingsinfo:eu-repo/semantics/publishedVersio

    Field measurements of energy in the 0.4-0.7 micron range I-I

    No full text
    RESP-555

    Measurement of radiant energy

    No full text
    RESP-581

    Solar-radiation for plant-growth

    No full text
    corecore