91 research outputs found

    Synchronization in a System of Globally Coupled Oscillators with Time Delay

    Full text link
    We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transitions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchronization frequency is manifested. Numerical simulations are also performed to give consistent results

    Synchronization and resonance in a driven system of coupled oscillators

    Full text link
    We study the noise effects in a driven system of globally coupled oscillators, with particular attention to the interplay between driving and noise. The self-consistency equation for the order parameter, which measures the collective synchronization of the system, is derived; it is found that the total order parameter decreases monotonically with noise, indicating overall suppression of synchronization. Still, for large coupling strengths, there exists an optimal noise level at which the periodic (ac) component of the order parameter reaches its maximum. The response of the phase velocity is also examined and found to display resonance behavior.Comment: 17 pages, 3 figure

    Dynamics of fluctuations in a fluid below the onset of Rayleigh-B\'enard convection

    Get PDF
    We present experimental data and their theoretical interpretation for the decay rates of temperature fluctuations in a thin layer of a fluid heated from below and confined between parallel horizontal plates. The measurements were made with the mean temperature of the layer corresponding to the critical isochore of sulfur hexafluoride above but near the critical point where fluctuations are exceptionally strong. They cover a wide range of temperature gradients below the onset of Rayleigh-B\'enard convection, and span wave numbers on both sides of the critical value for this onset. The decay rates were determined from experimental shadowgraph images of the fluctuations at several camera exposure times. We present a theoretical expression for an exposure-time-dependent structure factor which is needed for the data analysis. As the onset of convection is approached, the data reveal the critical slowing-down associated with the bifurcation. Theoretical predictions for the decay rates as a function of the wave number and temperature gradient are presented and compared with the experimental data. Quantitative agreement is obtained if allowance is made for some uncertainty in the small spacing between the plates, and when an empirical estimate is employed for the influence of symmetric deviations from the Oberbeck-Boussinesq approximation which are to be expected in a fluid with its density at the mean temperature located on the critical isochore.Comment: 13 pages, 10 figures, 52 reference

    Evaluating the performance of artificial intelligence software for lung nodule detection on chest radiographs in a retrospective real-world UK population

    Get PDF
    Objectives Early identification of lung cancer on chest radiographs improves patient outcomes. Artificial intelligence (AI) tools may increase diagnostic accuracy and streamline this pathway. This study evaluated the performance of commercially available AI-based software trained to identify cancerous lung nodules on chest radiographs. Design This retrospective study included primary care chest radiographs acquired in a UK centre. The software evaluated each radiograph independently and outputs were compared with two reference standards: (1) the radiologist report and (2) the diagnosis of cancer by multidisciplinary team decision. Failure analysis was performed by interrogating the software marker locations on radiographs. Participants 5722 consecutive chest radiographs were included from 5592 patients (median age 59 years, 53.8% women, 1.6% prevalence of cancer). Results Compared with radiologist reports for nodule detection, the software demonstrated sensitivity 54.5% (95% CI 44.2% to 64.4%), specificity 83.2% (82.2% to 84.1%), positive predictive value (PPV) 5.5% (4.6% to 6.6%) and negative predictive value (NPV) 99.0% (98.8% to 99.2%). Compared with cancer diagnosis, the software demonstrated sensitivity 60.9% (50.1% to 70.9%), specificity 83.3% (82.3% to 84.2%), PPV 5.6% (4.8% to 6.6%) and NPV 99.2% (99.0% to 99.4%). Normal or variant anatomy was misidentified as an abnormality in 69.9% of the 943 false positive cases. Conclusions The software demonstrated considerable underperformance in this real-world patient cohort. Failure analysis suggested a lack of generalisability in the training and testing datasets as a potential factor. The low PPV carries the risk of over-investigation and limits the translation of the software to clinical practice. Our findings highlight the importance of training and testing software in representative datasets, with broader implications for the implementation of AI tools in imaging

    Lignin deconstruction by anaerobic fungi

    Get PDF
    Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    SCOAP
    • 

    corecore