72 research outputs found

    A QTL genome scan of the metabolic syndrome and its component traits

    Get PDF
    BACKGROUND: Because high blood pressure, altered lipid levels, obesity, and diabetes so frequently occur together, they are sometimes collectively referred to as the metabolic syndrome. While there have been many studies of each metabolic syndrome trait separately, few studies have attempted to analyze them combined, i.e., as one composite variable, in quantitative trait linkage or association analysis. We used genotype and phenotype data from the Framingham Heart Study to perform a full-genome scan for quantitative trait loci underlying the metabolic syndrome. RESULTS: Heritability estimates for all of the covariate-adjusted and age- and gender-standardized individual traits, and the composite metabolic syndrome trait, were all fairly high (0.39–0.62), and the composite trait was among the highest at 0.61. The composite trait yielded no regions with suggestive linkage by Lander and Kruglyak's criteria, although there were several noteworthy regions for individual traits, some of which were also observed for the composite variable. CONCLUSION: Despite its high heritability, the composite metabolic syndrome trait variable did not increase the power to detect or localize linkage peaks in this sample. However, this strategy and related methods of combining correlated individual traits deserve further investigation, particularly in settings with complex causal pathways

    Studios: New Tools at MaineHealth to Improve Research and Engage Stakeholders

    Get PDF
    An introduction, description of benefits, and additional information about the new tools of the studios at MaineHealth.https://knowledgeconnection.mainehealth.org/lambrew-retreat-2023/1031/thumbnail.jp

    The autism inpatient collection: Methods and preliminary sample description

    Get PDF
    © 2015 Siegel et al. Background: Individuals severely affected by autism spectrum disorder (ASD), including those with intellectual disability, expressive language impairment, and/or self-injurious behavior (SIB), are underrepresented in the ASD literature and extant collections of phenotypic and biological data. An understanding of ASD's etiology and subtypes can only be as complete as the studied samples are representative. Methods: The Autism Inpatient Collection (AIC) is a multi-site study enrolling children and adolescents with ASD aged 4-20 years admitted to six specialized inpatient psychiatry units. Enrollment began March, 2014, and continues at a rate of over 400 children annually. Measures characterizing adaptive and cognitive functioning, communication, externalizing behaviors, emotion regulation, psychiatric co-morbidity, self-injurious behavior, parent stress, and parent self-efficacy are collected. ASD diagnosis is confirmed by the Autism Diagnostic Observation Schedule - 2 (ADOS-2) and extensive inpatient observation. Biological samples from probands and their biological parents are banked and processed for DNA extraction and creation of lymphoblastoid cell lines. Results: Sixty-one percent of eligible subjects were enrolled. The first 147 subjects were an average of 12.6 years old (SD 3.42, range 4-20); 26.5 % female; 74.8 % Caucasian, and 81.6 % non-Hispanic/non-Latino. Mean non-verbal intelligence quotient IQ = 70.9 (SD 29.16, range 30-137) and mean adaptive behavior composite score = 55.6 (SD 12.9, range 27-96). A majority of subjects (52.4 %) were non- or minimally verbal. The average Aberrant Behavior Checklist - Irritability Subscale score was 28.6, well above the typical threshold for clinically concerning externalizing behaviors, and 26.5 % of the sample engaged in SIB. Females had more frequent and severe SIB than males. Conclusions: Preliminary data indicate that the AIC has a rich representation of the portion of the autism spectrum that is understudied and underrepresented in extant data collections. More than half of the sample is non- or minimally verbal, over 40 % have intellectual disability, and over one quarter exhibit SIB. The AIC is a substantial new resource for study of the full autism spectrum, which will augment existing data on higher-functioning cohorts and facilitate the identification of genetic subtypes and novel treatment targets. The AIC investigators welcome collaborations with other investigators, and access to the AIC phenotypic data and biosamples may be requested through the Simons Foundation (www.sfari.org)

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Higher hospitalization and mortality rates among SARS-CoV-2-infected persons in rural America

    No full text
    PURPOSE: Rural communities are among the most underserved and resource-scarce populations in the United States. However, there are limited data on COVID-19 outcomes in rural America. This study aims to compare hospitalization rates and inpatient mortality among SARS-CoV-2-infected persons stratified by residential rurality. METHODS: This retrospective cohort study from the National COVID Cohort Collaborative (N3C) assesses 1,033,229 patients from 44 US hospital systems diagnosed with SARS-CoV-2 infection between January 2020 and June 2021. Primary outcomes were hospitalization and all-cause inpatient mortality. Secondary outcomes were utilization of supplemental oxygen, invasive mechanical ventilation, vasopressor support, extracorporeal membrane oxygenation, and incidence of major adverse cardiovascular events or hospital readmission. The analytic approach estimates 90-day survival in hospitalized patients and associations between rurality, hospitalization, and inpatient adverse events while controlling for major risk factors using Kaplan-Meier survival estimates and mixed-effects logistic regression. FINDINGS: Of 1,033,229 diagnosed COVID-19 patients included, 186,882 required hospitalization. After adjusting for demographic differences and comorbidities, urban-adjacent and nonurban-adjacent rural dwellers with COVID-19 were more likely to be hospitalized (adjusted odds ratio [aOR] 1.18, 95% confidence interval [CI], 1.16-1.21 and aOR 1.29, CI 1.24-1.1.34) and to die or be transferred to hospice (aOR 1.36, CI 1.29-1.43 and 1.37, CI 1.26-1.50), respectively. All secondary outcomes were more likely among rural patients. CONCLUSIONS: Hospitalization, inpatient mortality, and other adverse outcomes are higher among rural persons with COVID-19, even after adjusting for demographic differences and comorbidities. Further research is needed to understand the factors that drive health disparities in rural populations

    A Genomewide Scan for Age-Related Macular Degeneration Provides Evidence for Linkage to Several Chromosomal Regions

    No full text
    We report the results of a genomewide scan for age-related macular degeneration (AMD) in 158 multiplex families. AMD classification was based on fundus photography and was assigned a grade ranging from 1 (no disease) to 5 (exudative disease). Genotyping was performed by the National Heart, Lung, and Blood Institute Mammalian Genotyping Service at Marshfield (404 short tandem repeat markers). The sample included 158 families with two or more siblings with AMD, 490 affected individuals, 101 unaffected individuals, and 38 whose affection status was unknown. Relative pairs included 511 affected sibling, 28 avuncular, 53 cousin, 7 grandparent-grandchild, and 9 grand-avuncular pairs. Two-point parametric and multipoint parametric and nonparametric analyses were performed. Maximum two-point LOD scores of 1.0–2.0 were found for markers on chromosomes 1, 2, 8, 10, 14, 15, and 22. Multipoint analyses were consistent with the two-point results for chromosomes 1, 2, 8, 10, and 22 and provided evidence for additional linkage regions on chromosomes 3, 6, 8, 12, 16, and X. Our signals on chromosomes 1q, 6p, and 10q are consistent with some other previously published results. Significant linkage to AMD was found for one marker on chromosome 2, two adjacent markers on chromosome 3, two adjacent markers on chromosome 6, and seven contiguous markers on chromosome 8, with empirical P values of .00001. The consistency of many of the other signals across both two-point and multipoint, as well as parametric and nonparametric, analyses indicate several other regions worthy of follow-up
    corecore