78 research outputs found

    Differential Expressions of Adhesive Molecules and Proteases Define Mechanisms of Ovarian Tumor Cell Matrix Penetration/Invasion

    Get PDF
    Epithelial ovarian cancer is an aggressive and deadly disease and understanding its invasion mechanisms is critical for its treatment. We sought to study the penetration/invasion of ovarian tumor cells into extracellular matrices (ECMs) using a fibroblast-derived three-dimensional (3D) culture model and time-lapse and confocal imaging. Twelve ovarian tumor cells were evaluated and classified into distinct groups based on their ECM remodeling phenotypes; those that degraded the ECM (represented by OVCAR5 cells) and those that did not (represented by OVCAR10 cells). Cells exhibiting a distinct ECM modifying behavior were also segregated by epithelial- or mesenchymal-like phenotypes and uPA or MMP-2/MMP-9 expression. The cells, which presented epithelial-like phenotypes, penetrated the ECM using proteases and maintained intact cell-cell interactions, while cells exhibiting mesenchymal phenotypes modified the matrices via Rho-associated serine/threonine kinase (ROCK) in the absence of apparent cell-cell interactions. Overall, this study demonstrates that different mechanisms of modifying matrices by ovarian tumor cells may reflect heterogeneity among tumors and emphasize the need to systematically assess these mechanisms to better design effective therapies

    Potential predictive markers of chemotherapy resistance in stage III ovarian serous carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemotherapy resistance remains a major obstacle in the treatment of women with ovarian cancer. Establishing predictive markers of chemoresponse would help to individualize therapy and improve survival of ovarian cancer patients. Chemotherapy resistance in ovarian cancer has been studied thoroughly and several non-overlapping single genes, gene profiles and copy number alterations have been suggested as potential markers. The objective of this study was to explore genetic alterations behind chemotherapy resistance in ovarian cancer with the ultimate aim to find potential predictive markers.</p> <p>Methods</p> <p>To create the best opportunities for identifying genetic alterations of importance for resistance, we selected a homogenous tumor material concerning histology, stage and chemotherapy. Using high-resolution whole genome array comparative genomic hybridization (CGH), we analyzed the tumor genomes of 40 fresh-frozen stage III ovarian serous carcinomas, all uniformly treated with combination therapy paclitaxel/carboplatin. Fisher's exact test was used to identify significant differences. Subsequently, we examined four genes in the significant regions (<it>EVI1</it>, <it>MDS1</it>, <it>SH3GL2</it>, <it>SH3KBP1</it>) plus the <it>ABCB1 </it>gene with quantitative real-time polymerase chain reaction (QPCR) to evaluate the impact of DNA alterations on the transcriptional level.</p> <p>Results</p> <p>We identified gain in 3q26.2, and losses in 6q11.2-12, 9p22.3, 9p22.2-22.1, 9p22.1-21.3, Xp22.2-22.12, Xp22.11-11.3, and Xp11.23-11.1 to be significantly associated with chemotherapy resistance. In the gene expression analysis, <it>EVI1 </it>expression differed between samples with gain versus without gain, exhibiting higher expression in the gain group.</p> <p>Conclusion</p> <p>In conclusion, we detected specific genetic alterations associated with resistance, of which some might be potential predictive markers of chemotherapy resistance in advanced ovarian serous carcinomas. Thus, further studies are required to validate these findings in an independent ovarian tumor series.</p

    External validation suggests Integrin beta 3 as prognostic biomarker in serous ovarian adenocarcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The majority of women with ovarian cancer are diagnosed in late stages, and the mortality rate is high. The use of biomarkers as prognostic factors may improve the treatment and clinical outcome of these patients. We performed an external validation of the potential biomarkers CLU, ITGB3, CAPG, and PRAME to determine if the expression levels are relevant to use as prognostic factors.</p> <p>Methods</p> <p>We analysed the gene expression of CLU, ITGB3, CAPG, and PRAME in 30 advanced staged serous adenocarcinomas with quantitative real-time polymerase chain reaction (QPCR) and the protein levels were analysed in 98 serous adenocarcinomas with western blot for semiquantitative analysis. Statistical differences in mRNA and protein expressions between tumours from survivors and tumours from deceased patients were evaluated using the Mann-Whitney U test.</p> <p>Results</p> <p>The gene and protein ITGB3 (Integrin beta 3) were significantly more expressed in tumours from survivors compared to tumours from deceased patients, which is in concordance with our previous results. However, no significant differences were detected for the other three genes or proteins CLU, CAPG, and PRAME.</p> <p>Conclusion</p> <p>The loss of ITGB3 expression in tumours from deceased patients and high expression in tumours from survivors could be used as a biomarker for patients with advanced serous tumours.</p

    E-cadherin expression and bromodeoxyuridine incorporation during development of ovarian inclusion cysts in age-matched breeder and incessantly ovulated CD-1 mice

    Get PDF
    BACKGROUND: Female CD-1/Swiss Webster mice subjected to incessant ovulation for 8 months and 12-month breeder mice both developed ovarian inclusion cysts similar to serous cystadenomas. The majority of cysts appeared to be dilated rete ovarii tubules, but high ovulation number resulted in more cortical inclusion cysts. We hypothesized that comparison of inclusion cyst pathology in animals of the same age, but with differences in total lifetime ovulation number, might allow us to determine distinguishing characteristics of the two types of cyst. METHODS: Ovaries from breeder mice (BR) or females subjected to incessant ovulation (IO) were compared at 6-, 9- and 12-months of age. Ovaries were serially sectioned and cysts characterized with regard to location and histology, E-cadherin immunoreactivity and rates of BrdU incorporation. RESULTS: Inclusion cysts developed with age in BR and IO ovaries. The majority of cysts were connected to the ovarian hilus. Two cortical inclusion cysts were observed in ten IO ovaries and one in ten BR ovaries. Low or no E-cadherin immuno-staining was seen in the OSE of all mice studied. Conversely, strong membrane immuno-staining was observed in rete ovarii epithelial cells. Variable E-cadherin immunoreactivity was seen in cells of hilar inclusion cysts, with strong staining observed in cuboidal ciliated cells and little or no staining in flat epithelial cells. Two of the three cortical cysts contained papillae, which showed E-cadherin immuno-staining at the edge of cells. However hilar and cortical cysts were not distinguishable by morphology, cell type or E-cadherin immunoreactivity. BrdU incorporation in cyst cells (1.4% [95% CI: 1.0 to 2.1]) was greater than in OSE (0.7% [95% CI: 0.4 to 1.2]) and very few BrdU-labeled cells were observed in rete ovarii at any age. Incessant ovulation significantly increased BrdU incorporation in OSE of older animals. CONCLUSION: These experiments confirm ovarian inclusion cysts develop with age in the CD-1 mouse strain, irrespective of total ovulation burden. We conclude longer periods of incessant ovulation do not lead to significant changes in inclusion cyst formation or steroidogenesis in CD-1 mice and inclusion cyst type can not be distinguished by morphology, cell proliferation rate or E-cadherin immunoreactivity

    Conditional Inactivation of Brca1, p53 and Rb in Mouse Ovaries Results in the Development of Leiomyosarcomas

    Get PDF
    Epithelial ovarian cancer (EOC) is thought to arise in part from the ovarian surface epithelium (OSE); however, the molecular events underlying this transformation are poorly understood. Germline mutations in the BRCA1 tumor suppressor gene result in a significantly increased risk of developing EOC and a large proportion of sporadic EOCs display some sort of BRCA1 dysfunction. To generate a model in which Brca1-mediated transformation can be studied, we previously inactivated Brca1 alone in murine OSE, which resulted in an increased accumulation of premalignant changes, but no tumor formation. In this study, we examined tumor formation in mice with conditionally expressed alleles of Brca1, p53 and Rb, alone or in combination. Intrabursal injection of adenovirus expressing Cre recombinase to inactivate p53 resulted in tumors in 100% of mice. Tumor progression was accelerated in mice with concomitant inactivation of Brca1 and p53, but not Rb and p53. Immunohistologic analyses classified the tumors as leiomyosarcomas that may be arising from the ovarian bursa. Brca1 inactivation in primary cultures of murine OSE cells led to a suppression of proliferation that could be rescued by concomitant inactivation of p53 and/or Rb. Brca1-deficient OSE cells displayed an increased sensitivity to the DNA damaging agent cisplatin, and this effect could be modulated by inactivation of p53 and/or Rb. These results indicate that Brca1 deficiency can accelerate tumor development and alter the sensitivity of OSE cells to chemotherapeutic agents. Intrabursal delivery of adenovirus intended to alter gene expression in the ovarian surface epithelium may, in some strains of mice, result in more rapid transformation of adjacent cells, resulting in leiomyosarcomas

    Gene expression profiling of mucinous ovarian tumors and comparison with upper and lower gastrointestinal tumors identifies markers associated with adverse outcomes.

    Get PDF
    PURPOSE: Advanced-stage mucinous ovarian carcinoma (MOC) has poor chemotherapy response and prognosis and lacks biomarkers to aid stage I adjuvant treatment. Differentiating primary MOC from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities. Clinicopathologic and gene-expression data were analyzed to identify prognostic and diagnostic features. EXPERIMENTAL DESIGN: Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients with MOC (n = 333), mucinous borderline ovarian tumors (MBOT, n = 151), and upper GI (n = 65) and lower GI tumors (n = 55). RESULTS: Infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2 years from diagnosis, compared with expansile pattern in stage I MOC [hazard ratio (HR), 2.77; 95% confidence interval (CI), 1.04–7.41, P = 0.042]. Increased expression of THBS2 and TAGLN was associated with shorter OS in MOC patients (HR, 1.25; 95% CI, 1.04–1.51, P = 0.016) and (HR, 1.21; 95% CI, 1.01–1.45, P = 0.043), respectively. ERBB2 (HER2) amplification or high mRNA expression was evident in 64 of 243 (26%) of MOCs, but only 8 of 243 (3%) were also infiltrative (4/39, 10%) or stage III/IV (4/31, 13%). CONCLUSIONS: An infiltrative growth pattern infers poor prognosis within 2 years from diagnosis and may help select stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confers an adverse prognosis and is upregulated in the infiltrative subtype, which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies

    CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study

    Get PDF
    BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC

    Shared heritability and functional enrichment across six solid cancers

    Get PDF
    Correction: Nature Communications 10 (2019): art. 4386 DOI: 10.1038/s41467-019-12095-8Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r(g) = 0.57, p = 4.6 x 10(-8)), breast and ovarian cancer (r(g) = 0.24, p = 7 x 10(-5)), breast and lung cancer (r(g) = 0.18, p = 1.5 x 10(-6)) and breast and colorectal cancer (r(g) = 0.15, p = 1.1 x 10(-4)). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.Peer reviewe
    corecore