61 research outputs found

    Antioxidant and antiproliferative activities of non-edible parts of selected tropical fruits

    Get PDF
    It is of interest that seeds and pericarps of tropical fruits contain phytochemicals being the components of various biological activities for beneficial health effects. This study was aimed to evaluate antioxidant and anticancer activities of the methanolic extracts from seeds and pericarps of three selected tropical fruits including Rambutan (Nephelium lappaceum L.), Litchi (Litchi chinensis Sonn.) and Tamarind (Tamarindus indica L.). Total phenolic content was determined by using the Folin-Ciocalteu method. Antioxidant capacity was evaluated based on the ability of the fruit extracts to scavenge ABTS and DPPH radicals. MTT reduction assay and Annexin V-FITC/PI staining were carried out for cytotoxicity and apoptosis induction, respectively. Total phenolic contents of the seeds and pericarps of the tropical fruits ranged from 104.60 to 501.95 mg/g DW. All extracts were found to have significant antioxidant activities. Among them, tamarind seed extract contained the highest total phenolic contents and possessed the highest antioxidant capacities. Tamarind seed extract showed the highest cytotoxicity to human mouth carcinoma (CLS-354) cells and had no toxicity to PBMCs. Staining with annexin V-FITC/PI showed that this apoptosis occurred early in this cell type with 10.0% of the cells undergoing apoptosis. Tamarind seed extract might have potential anticancer activity which could be attributed, in part, to selectively inhibit the growth of CLS-354 cells and induce apoptosis. This research finding would be valuable information to identify major constituents of the extracts and mechanisms underlying anticancer activity which could be attributed to dietary health supplements or cancer chemoprevention from fruits

    Tamarindus indica Extract Alters Release of Alpha Enolase, Apolipoprotein A-I, Transthyretin and Rab GDP Dissociation Inhibitor Beta from HepG2 Cells

    Get PDF
    Background: The plasma cholesterol and triacylglycerol lowering effects of Tamarindus indica extract have been previously described. We have also shown that the methanol extract of T. indica fruit pulp altered the expression of lipid-associated genes including ABCG5 and APOAI in HepG2 cells. In the present study, effects of the same extract on the release of proteins from the cells were investigated using the proteomics approach. Methodology/Principal Findings: When culture media of HepG2 cells grown in the absence and presence of the methanol extract of T. indica fruit pulp were subjected to 2-dimensional gel electrophoresis, the expression of seven proteins was found to be significantly different (p<0.03125). Five of the spots were subsequently identified as alpha enolase (ENO1), transthyretin (TTR), apolipoprotein A-I (ApoA-I; two isoforms), and rab GDP dissociation inhibitor beta (GDI-2). A functional network of lipid metabolism, molecular transport and small molecule biochemistry that interconnects the three latter proteins with the interactomes was identified using the Ingenuity Pathways Analysis software. Conclusion/Significance: The methanol extract of T. indica fruit pulp altered the release of ENO1, ApoA-I, TTR and GDI-2 from HepG2 cells. Our results provide support on the effect of T. indica extract on cellular lipid metabolism, particularly that of cholesterol

    Gene expression profiles in human HepG2 cells treated with extracts of the Tamarindus indica fruit pulp

    Get PDF
    Tamarindus indicaL. (T. indica) or locally known as asam jawa belongs to the family of Leguminosae. The fruit pulp had been reported to have antioxidant activities and possess hypolipidaemic effects. In this study, we attempted to investigate the gene expression patterns in human hepatoma HepG2 cell line in response to treatment with low concentration of the fruit pulp extracts. Microarray analysis using Affymetrix Human Genome 1.0 S.T arrays was used in the study. Microarray data were validated using semi-quantitative RT–PCR and real-time RT–PCR. Amongst the significantly up-regulated genes were those that code for the metallothioneins (MT1M, MT1F, MT1X) and glutathione S-transferases (GSTA1, GSTA2, GST02) that are involved in stress response. APOA4, APOA5, ABCG5 and MTTP genes were also significantly regulated that could be linked to hypolipidaemic activities of the T. indica fruit pulp

    The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations

    Get PDF
    Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on the available evidence on the species׳ pharmacology and safety, we highlight ways in which their therapeutic potential can be properly harnessed for possible integration into the country׳s healthcare system. Materials and methods: Ethnobotanical information was obtained from a literature search of electronic databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants used in diabetes management, in which the place of use and/or sample collection was identified as Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches. Results: The hypoglycemic effect of over a hundred out of the 115 plants reviewed in this paper is backed by preclinical experimental evidence, either in vivo or in vitro. One-third of the plants have been studied for their mechanism of action, while isolation of the bioactive constituent(s) has been accomplished for twenty three plants. Some plants showed specific organ toxicity, mostly nephrotoxic or hepatotoxic, with direct effects on the levels of some liver function enzymes. Twenty eight plants have been identified as in vitro modulators of P-glycoprotein and/or one or more of the cytochrome P450 enzymes, while eleven plants altered the levels of phase 2 metabolic enzymes, chiefly glutathione, with the potential to alter the pharmacokinetics of co-administered drugs. Conclusion: This review, therefore, provides a useful resource to enable a thorough assessment of the profile of plants used in diabetes management so as to ensure a more rational use. By anticipating potential toxicities or possible herb–drug interactions, significant risks which would otherwise represent a burden on the country׳s healthcare system can be avoided

    Piper betle L. Piperaceae

    Get PDF
    Artanthe hexagyna Miq.; Betela mastica Raf.; Chavica betle (L.) Miq.; Chavica blumei Miq.; Chavica chuvya Miq.; Chavica densa Miq.; Chavica siriboa (L.) Miq.; Cubeba melamiri Miq.; Cubeba seriboa Miq.; Macropiper potamogetonifolium (Opiz) Miq.; Piper anisodorum Blanco; Piper bathicarpum C.DC.; Piper bidentatum Stokes; Piper blancoi Merr.; Piper blumei (Miq.) Backer; Piper canaliculatum Opiz; Piper carnistilum C.DC.; Piper densum Blume; Piper fenixii C.DC.; Piper macgregorii C.DC.; Piper malamiri Blume; Piper malamiris L.; Piper malarayatense C.DC.; Piper marianum Opiz; Piper philippinense C.DC.; Piper pinguispicum C.DC. & Koord.; Piper potamogetonifolium Opiz; Piper puberulinodum C.DC.; Piper rubroglandulosum Chaveer. & Mokkamul; Piper saururus Burm.; Piper siriboa L.; Piperi betlum (L.) St.-Lag

    Efficiency Assessment of Immunochromatographic Strip Test for the Diagnosis of Alpha-Thalassemia-1 Carriers

    No full text
    Context: The prevention and control of thalassemia in Thailand focus on the appropriate diagnosis with a simple, cheap, and practical tool for any staff to use. Aims: (1) To screen alpha-thalassemia-1 carriers among pregnant women and spouses by immunochromatographic (IC) strip test and one tube osmotic fragility test (OFT) and (2) to evaluate the accuracy of both screening methods. Setting and Design: Cross-sectional study for 6 months duration from January to June 2013 at Kudjab Hospital located in Udonthani Province, Thailand. Subjects and Methods: Pregnant women and spouses attending the antenatal care clinic joined the study for blood sample collection (n = 414). The specimens were then taken for screening by osmotic fragility and IC strip test to specify alpha-thalassemia carriers. Another set of the specimens was sent for testing using hemoglobin (Hb) typing for thalassemia and abnormal Hb carriers and using multiplex polymerase chain reaction for alpha-thalassemia-1 carriers diagnosis as a gold standard. Results: There were 27 cases found as positive for alpha-thalassemia including alpha-thalassemia-1 carriers, South East Asian type, alpha-thalassemia-1 carriers, Thai deletion type, HbH and Hb constant spring, which were 18, 2, 3, and 2 cases, respectively. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of IC strip test were 92.6%, 95.1%, 56.8%, 99.4%, and 94.9%, respectively, which were higher than those of OFT. Conclusions: Accuracy of IC strip test was better than those of OFT. IC strip test may probably be very helpful in a massive thalassemia screening program

    A PHYSIOCHEMICAL STUDY ON DRUG DELIVERY OF METFORMIN HCl LOADED CS-PLGA NANOPARTICLES

    No full text
    Objective: The current research was based on developing CS-PLGA nanoparticles (NPs) drug delivery system (DDS) for improving the bio-availability of metformin HCl, an anti-diabetic drug. Methods: Nanoprecipitation method was utilized to prepare the metformin HCl-loaded CS-PLGA NPs DDS. The metformin HCl-loaded NPs were validated using an analytical method and characterization of NPs was also done. These polymers release the drug in a controlled manner. Results: The correlation coefficient (R2) value for the metformin HCl calibration curve was 0.9971 in phosphate buffer pH 6.8 at a concentration range of 0-12 μg/ml. Metformin HCl-loaded NPs release the drug at 144 hrs, approximately 90%. DSC tests were carried out for 50 mg and 75 mg of MET HCl incorporated NPs and FT-IR for 50 mg of MET HCl incorporated NPs, it was clear from the FT-IR and DSC spectra that there were no interactions between the metformin HCl and the polymer. Conclusion: It was proven that metformin HCl-loaded NPs act as a prominent DDS by exhibiting extensive drug release and increase in its bioavailability

    Comparison of Serum Lipid Profiles between Normal Controls and Breast Cancer Patients

    No full text
    Background: Researchers have reported association of plasma/serum lipids and lipoproteins with different cancers. Increase levels of circulating lipids and lipoproteins have been associated with breast cancer risk. Aim: The aim of this study is to compare serum lipid profiles: total-cholesterol (T-CHOL), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and very low density lipoprotein-cholesterol (VLDL-C) between breast cancer patients and normal participants. Materials and Methods: A total of 403 women in this study were divided into two groups in the period during May 2006-April 2007. Blood samples were collected from 249 patients with early stage breast cancer and 154 normal controls for serum lipid profiles (T-CHOL, TG, HDL-C, LDL-C and VLDL-C) analysis using Hitachi 717 Autoanalyzer (Roche Diagnostic GmbH, Germany). TG, LDL-C and VLDL-C levels in breast cancer group were significantly increased as compared with normal controls group (P < 0.001), whereas HDL-C and T-CHOL levels were not. Results: The results of this study suggest that increased serum lipid profiles may associate with breast cancer risk in Thai women. Further studies to group important factors including, cancer stages, types of cancer, parity, and menopausal status that may affect to lipid profiles in breast cancer patients along with an investigation of new lipid profiles to clarify most lipid factors that may involve in breast cancer development are needed
    corecore