207 research outputs found

    BioSentinel: Mission Summary and Lessons Learned From the First Deep Space Biology CubeSat Mission

    Get PDF
    Launched on Artemis I, BioSentinel carries a biology experiment into deep space for the first time in 50 years. A 6U CubeSat form factor was utilized for the spacecraft, which included technologies newly developed or adapted for operations beyond Earth orbit. The spacecraft carries onboard budding yeast, Saccharomyces cerevisiae, as an analog to human cells to test the biological response to deep space radiation. This was the maiden deep-space voyage for many of the subsystems, and the first time to evaluate their performance in flight operation. Flying a CubeSat beyond LEO comes with unique challenges with respect to trajectory uncertainty and mission operations planning. The nominal plan was a lunar fly-by, followed by an insertion into heliocentric orbit. However, some possible scenarios included lunar eclipses that could have severely impacted the power budget during that phase of the mission, while others could have resulted in a “retrograde” hyperbola at swing-by resulting in the spacecraft traveling inward toward Earth or even towards a collision with the lunar surface. The commissioning phase of the mission was successful and completed a week ahead of schedule. It did not come without its exciting moments and challenges. First contact with the spacecraft uncovered that the vehicle was unexpectedly tumbling after deployment, a situation that needed to be corrected urgently. The mission operations team executed a contingency plan to stabilize the spacecraft, with just moments to spare before the battery ran out of power. The BioSensor payload onboard the spacecraft is a complex instrument that includes microfluidics, optical systems, sensor control electronics, as well as the living yeast cells. BioSentinel also includes a TimePix radiation sensor implemented by JSC’s RadWorks group. Total dose and Linear Energy Transfer (LET) spectrum data are compared to the rate of cell growth and metabolic activity measured in the S. cerevisiae cells. BioSentinel mature nanosatellite technologies included: deep space communications and navigation, autonomous attitude control and momentum management, and micro-propulsion systems, to provide an adaptable nanosatellite platform for deep space uses. This paper discusses the performance of the BioSentinel spacecraft through the mission phase, and includes lessons learned from challenges and anomalies. BioSentinel had many successes and will be a pathfinder for future deep space CubeSats and biology missions

    Immunophenotypic studies of monoclonal gammopathy of undetermined significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoclonal gammopathy of undetermined significance (MGUS) is a common plasma cell dyscrasia, comprising the most indolent form of monoclonal gammopathy. However, approximately 25% of MGUS cases ultimately progress to plasma cell myeloma (PCM) or related diseases. It is difficult to predict which subset of patients will transform. In this study, we examined the immunophenotypic differences of plasma cells in MGUS and PCM.</p> <p>Methods</p> <p>Bone marrow specimens from 32 MGUS patients and 32 PCM patients were analyzed by 4-color flow cytometry, using cluster analysis of ungated data, for the expression of several markers, including CD10, CD19, CD20, CD38, CD45, CD56 and surface and intracellular immunoglobulin light chains.</p> <p>Results</p> <p>All MGUS patients had two subpopulations of plasma cells, one with a "normal" phenotype [CD19(+), CD56(-), CD38(bright +)] and one with an aberrant phenotype [either CD19(-)/CD56(+) or CD19(-)/CD56(-)]. The normal subpopulation ranged from 4.4 to 86% (mean 27%) of total plasma cells. Only 20 of 32 PCM cases showed an identifiable normal subpopulation at significantly lower frequency [range 0–32%, mean 3.3%, p << 0.001]. The plasma cells in PCM were significantly less likely to express CD19 [1/32 (3.1%) vs. 13/29 (45%), p << 0.001] and more likely to express surface immunoglobulin [21/32 (66%) vs. 3/28 (11%), p << 0.001], compared to MGUS. Those expressing CD19 did so at a significantly lower level than in MGUS, with no overlap in mean fluorescence intensities [174 ± 25 vs. 430 ± 34, p << 0.001]. There were no significant differences in CD56 expression [23/32 (72%) vs. 18/29 (62%), p = 0.29], CD45 expression [15/32 (47%) vs. 20/30 (67%), p = 0.10] or CD38 mean fluorescence intensities [6552 ± 451 vs. 6365 ± 420, p = 0.38]. Two of the six MGUS cases (33%) with >90% CD19(-) plasma cells showed progression of disease, whereas none of the cases with >10% CD19(+) plasma cells evolved to PCM.</p> <p>Conclusion</p> <p>MGUS cases with potential for disease progression appeared to lack CD19 expression on >90% of their plasma cells, displaying an immunophenotypic profile similar to PCM plasma cells. A higher relative proportion of CD19(+) plasma cells in MGUS may be associated with a lower potential for disease progression.</p

    No evidence for circulating HuD-specific CD8+ T cells in patients with paraneoplastic neurological syndromes and Hu antibodies

    Get PDF
    Aim: In paraneoplastic neurological syndromes (PNS) associated with small cell lung cancer (SCLC) and Hu antibodies (Hu-PNS), Hu antigens expressed by the tumour hypothetically trigger an immune response that also reacts with Hu antigens in the nervous system, resulting in tumour suppression and neuronal damage. To gain more insight into the hypothesized CD8+T cell-mediated immune pathogenesis of these syndromes, we searched for circulating HuD-specific CD8+T cells in a large cohort of Hu-PNS patients and controls. Patients and methods: Blood was tested from 43 Hu-PNS patients, 31 Hu antibody negativ

    Correlations between SO2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile

    Get PDF
    The characteristics of the open vent activity of Villarrica volcano, Chile, were studied in detail by integrating visual observations of the lava lake, analysis of the seismic tremor, and measurements of SO2 flux. The outgassing activity comprises a persistent gas plume emission from the bottom of the crater as well as frequent explosive events. Three main styles of bubble bursting were identified at the surface of the active lava lake: seething magma, small short-lived lava fountains, and Strombolian explosions. Seething magma consists of continual burst of relatively small bubbles (a few meters in diameter) with varying strength over the entire surface of the lava lake. Small lava fountains, seen as a vigorous extension of seething magma, commonly have durations of 20–120 s and reach 10–40 m high above the lava lake. Correlations between seismicity and visual observations indicate that the seismic tremor is mostly caused by the explosive outgassing activity. Furthermore, for different periods between 2000 and 2006, during which the activity remained comparable, the real-time seismic amplitude measurement system (RSAM) and SO2 emission rates show a very good correlation. Higher SO2 emissions appeared to be related to higher levels of the lava lake, stronger bubble bursting activity, and changes in the morphology and texture of the crater floor. Background (low) levels of activity correspond to a lava lake located >80 m below the crater rim, small and/or blocky morphology of the roof, seismic amplitude (RSAM) lower than 25 units, few volcano-tectonic earthquakes, and daily averages of SO2 emissions lower than 600 Mg/d

    Astro2020 APC White Paper: The Early Career Perspective on the Coming Decade, Astrophysics Career Paths, and the Decadal Survey Process

    Get PDF
    In response to the need for the Astro2020 Decadal Survey to explicitly engage early career astronomers, the National Academies of Sciences, Engineering, and Medicine hosted the Early Career Astronomer and Astrophysicist Focus Session (ECFS) on October 8-9, 2018 under the auspices of Committee of Astronomy and Astrophysics. The meeting was attended by fifty six pre-tenure faculty, research scientists, postdoctoral scholars, and senior graduate students, as well as eight former decadal survey committee members, who acted as facilitators. The event was designed to educate early career astronomers about the decadal survey process, to solicit their feedback on the role that early career astronomers should play in Astro2020, and to provide a forum for the discussion of a wide range of topics regarding the astrophysics career path. This white paper presents highlights and themes that emerged during two days of discussion. In Section 1, we discuss concerns that emerged regarding the coming decade and the astrophysics career path, as well as specific recommendations from participants regarding how to address them. We have organized these concerns and suggestions into five broad themes. These include (sequentially): (1) adequately training astronomers in the statistical and computational techniques necessary in an era of "big data", (2) responses to the growth of collaborations and telescopes, (3) concerns about the adequacy of graduate and postdoctoral training, (4) the need for improvements in equity and inclusion in astronomy, and (5) smoothing and facilitating transitions between early career stages. Section 2 is focused on ideas regarding the decadal survey itself, including: incorporating early career voices, ensuring diverse input from a variety of stakeholders, and successfully and broadly disseminating the results of the survey

    Development and Validation of an Epitope Prediction Tool for Swine (PigMatrix) Based on the Pocket Profile Method

    Get PDF
    Background: T cell epitope prediction tools and associated vaccine design algorithms have accelerated the development of vaccines for humans. Predictive tools for swine and other food animals are not as well developed, primarily because the data required to develop the tools are lacking. Here, we overcome a lack of T cell epitope data to construct swine epitope predictors by systematically leveraging available human information. Applying the “pocket profile method”, we use sequence and structural similarities in the binding pockets of human and swine major histocompatibility complex proteins to infer Swine Leukocyte Antigen (SLA) peptide binding preferences. We developed epitope-prediction matrices (PigMatrices), for three SLA class I alleles (SLA-1*0401, 2*0401 and 3*0401) and one class II allele (SLA-DRB1*0201), based on the binding preferences of the best-matched Human Leukocyte Antigen (HLA) pocket for each SLA pocket. The contact residues involved in the binding pockets were defined for class I based on crystal structures of either SLA (SLA-specific contacts, Ssc) or HLA supertype alleles (HLA contacts, Hc); for class II, only Hc was possible. Different substitution matrices were evaluated (PAM and BLOSUM) for scoring pocket similarity and identifying the best human match. The accuracy of the PigMatrices was compared to available online swine epitope prediction tools such as PickPocket and NetMHCpan. Results: PigMatrices that used Ssc to define the pocket sequences and PAM30 to score pocket similarity demonstrated the best predictive performance and were able to accurately separate binders from random peptides. For SLA-1*0401 and 2*0401, PigMatrix achieved area under the receiver operating characteristic curves (AUC) of 0.78 and 0.73, respectively, which were equivalent or better than PickPocket (0.76 and 0.54) and NetMHCpan version 2.4 (0.41 and 0.51) and version 2.8 (0.72 and 0.71). In addition, we developed the first predictive SLA class II matrix, obtaining an AUC of 0.73 for existing SLA-DRB1*0201 epitopes. Notably, PigMatrix achieved this level of predictive power without training on SLA binding data. Conclusions: Overall, the pocket profile method combined with binding preferences from HLA binding data shows significant promise for developing T cell epitope prediction tools for pigs. When combined with existing vaccine design algorithms, PigMatrix will be useful for developing genome-derived vaccines for a range of pig pathogens for which no effective vaccines currently exist (e.g. porcine reproductive and respiratory syndrome, influenza and porcine epidemic diarrhea)

    Synthetic Double-Stranded RNAs Are Adjuvants for the Induction of T Helper 1 and Humoral Immune Responses to Human Papillomavirus in Rhesus Macaques

    Get PDF
    Toll-like receptor (TLR) ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C), a synthetic double-stranded RNA (dsRNA), is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c.) with keyhole limpet hemocyanin (KLH) or human papillomavirus (HPV)16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002) or 6 mg/animal poly I:C12U (p = 0.001) when compared with immunization with KLH alone. Notably, poly ICLC—but not CpG-C given at the same dose—also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell–activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01). This was paralleled by the reduced production of the homeostatic T cell–attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants for virus-specific Th1 and humoral immune responses in nonhuman primates

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore