102 research outputs found

    Adsorption and onset of lubrication by a double-chained cationic surfactant on silica surfaces

    Full text link
    In the context of glass fiber manufacturing the onset of lubrication by a C18 double-chained cationic surfactant has been investigated at high normal contact pressures. Comparison with adsorption kinetics demonstrates that lubrication is not directly connected to the surfactant surface excess but originates from the transition to a defect-free bilayer which generates limited dissipation. The impact of ionic strength and shear rate has also been studied

    Attenuated total reflection infrared spectroscopy for studying adsorbates on planar model catalysts : CO adsorption on silica supported Rh nanoparticles

    Get PDF
    A sensitive method is presented for studying adsorption of gaseous species on metal surfaces in vacuum by attenuated total internal reflection Fourier transform IR spectroscopy (ATR). The method is illustrated by CO adsorption expts. on silica supported Rh nanoparticles. An exptl. setup and a procedure are described in detail to obtain a sensitivity of reflectance change of .apprx.5 * 10-5 absorbance units. Here, a silicon ATR crystal with a 50 nm layer of hydroxylated silica acts as the support for the Rh nanoparticles. These particles are easily prepd. by spincoat impregnation from a RhCl3 soln. followed by H2 redn. XPS before and after redn. shows that rhodium is reduced to Rh0 and that all chlorine is removed. At. force microscope images the distribution of the particles, which are 3-4 nm in height. When the crystal is exposed to pressures up to 1 mbar of CO, a gas which is inert to the silica support, the stretch vibration of linearly adsorbed CO on the Rh nanoparticles is detected at 2023 cm-1, while no bridged CO or geminal dicarbonyl species can be distinguished. The min. detectable coverage is estd. .apprx.0.005 CO per nm2 substrate area or .apprx.5 * 10-4 ML. [on SciFinder (R)

    Reactivity and Dynamics at Liquid Interfaces

    Full text link

    Noncontact Temperature Measurements of Hot Steel Bodies Using an Electromagnetic Acoustic Transducer (EMAT)

    No full text
    A noncontacting sensor system for measuring the average internal temperature of hot steel objects has been developed. The system uses a pulsed ruby laser for the generation of the acoustic wave and a pulsed Electromagnetic Acoustic Transducer (EMAT) as the receiver in a through-transmission technique. The pulsed EMAT design has been successfully tested to 1300° Celsius on a nine-inch-long stainless steel sample. The system measures the time-of-flight of the acoustic wave, which is coupled with the part dimension to determine the average acoustic velocity. From a calibrated relationship between velocity and temperature, the average sample temperature is determined.</p

    Infrared Spectroscopic Study of the Crystalline Phases of Sodium Dodecyl Sulfate

    No full text
    corecore